
Getting Started Building ColdFusion MX Applications

Trademarks
Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver, Authorware,
Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage Designer, Backstage
Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, ColdFusion, Design in Motion, Director, Director
Multimedia Studio, Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000, Extreme 3D, Fireworks,
Flash, Fontographer, FreeHand, FreeHand Graphics Studio, Generator, Generator Developer's Studio, Generator Dynamic Graphics
Server, JRun, Knowledge Objects, Knowledge Stream, Knowledge Track, Lingo, Live Effects, Macromedia, Macromedia M Logo &
Design, Macromedia Flash, Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker, Object Authoring, Power
Applets, Priority Access, Roundtrip HTML, Scriptlets, SoundEdit, ShockRave, Shockmachine, Shockwave, Shockwave Remote,
Shockwave Internet Studio, Showcase, Tools to Power Your Ideas, Universal Media, Virtuoso, Web Design 101, Whirlwind and Xtra
are trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions including internationally. Other
product names, logos, designs, titles, words or phrases mentioned within this publication may be trademarks, servicemarks, or
tradenames of Macromedia, Inc. or other entities and may be registered in certain jurisdictions including internationally.

This product includes code licensed from RSA Data Security.

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not responsible for
the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your own risk. Macromedia
provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia endorses or accepts any
responsibility for the content on those third-party sites.

Apple Disclaimer
APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER
RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

Copyright © 1999–2002 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, translated,
or converted to any electronic or machine-readable form in whole or in part without prior written approval of Macromedia, Inc.
Part Number ZCF60M500

Acknowledgments
Project Management: Stephen M. Gilson

Writer: Cheryl Smith

Editor: Linda Adler

First Edition: May 2002

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
ABOUT THIS BOOK . VII

Developer resources . viii
About Macromedia ColdFusion MX documentation. ix

Printed and online documentation set . ix
Viewing online documentation. x

Getting answers . x
Contacting Macromedia . x

Part I Welcome to ColdFusion . 1

CHAPTER 1 Introducing ColdFusion MX . 3

The Internet and related technologies .4
The Internet .4
Intranet applications. .5
Web servers .5
Web pages .5
Web browsers .6
URLs .7
Understanding web application servers .7

What is ColdFusion MX? .8
The ColdFusion application server .9
The ColdFusion Markup Language .9
The ColdFusion MX Administrator .10

Using ColdFusion MX with Macromedia Flash MX .11

CHAPTER 2 CFML Basics . 13

Working with ColdFusion pages .14
Creating a ColdFusion page .14

Understanding CFML elements. .16
Tags .16
Functions .17
Variables. .19
Creating variables with the cfset tag .19
Displaying variable output .20

Working with CFML expressions .21
Building expressions .21

Understanding conditional processing .25
iii

Processing form data .26
Form processing .26

Commenting your code .28

CHAPTER 3 Database Fundamentals . 29

Understanding database basics .30
What is a relational database? .30
Understanding relational tables .31

About SQL .32
Using SQL to interact with a database .32

Using SQL with ColdFusion .33
About data sources .33
Writing SQL and CFML statements to interact with a data source.33
CFML tags that interact with a database. .33

CHAPTER 4 Configuring Your Development Environment. 35

Verifying the tutorial file structure .36
Configuring database connection and debugging options .37

Configuring the connection to the sample database file .37
Enabling debugging options .40

Macromedia development environment tools .43
The Dreamweaver MX environment .44
Configuring Dreamweaver MX for ColdFusion development. .45
Configuring HomeSite+ for ColdFusion development .45

Part II Building a ColdFusion Application . 47

LESSON 1 Preparing to Build the Sample Application 49

Application development steps. .50
Determining the application functional requirements .51
Determining the data requirements .52
Designing the database for your application. .53
Developing the sample application .55

How to proceed .55

LESSON 2 Writing Your First ColdFusion Application 59

Creating your first ColdFusion application .60
Application development steps .61

Using a web page to list trips .62
Converting to a dynamic web page .62
Using SQL with cfquery to dynamically retrieve information .64
Creating a dynamic web page .66

Developing a search capability .69
Designing the search criteria page. .69
Building the Search Results page .73
Completing the Trip Search Results page .76

Summary .80
In the next lesson .80
iv Contents

LESSON 3 Creating a Main Application Page 81

Enhancing the Trip Maintenance application. .82
Showing additional trip details .84
Avoiding the potential security risk when using dynamic SQL .88
Linking the Search Results page to the Trip Detail page .89
Enhancing the look of the search results and detail pages .90
Creating the main application page from the Trip Detail page .93
Adding navigation buttons to browse database .94
Adding database maintenance buttons .96

Summary .98
In the next lesson .98

LESSON 4 Validating Data to Enforce Business Rules 99

Enhancing the Trip Maintenance application. .100
Using an HTML form to collect data .101
Developing code to validate data and enforce business rules. .103

Validating data using a server-side action page .104
Validating data on the client using ColdFusion form tags. .107
Using cfselect tag to present valid event types .110
Using other client-side script to reduce edits on the server .112
Validating the existence of the trip photo file .115

Summary .117
In the next lesson .117

LESSON 5 Implementing the Browsing and Maintenance

Database Functions .119

Enhancing the Trip Maintenance application. .120
Application development steps .121
Using dynamic SQL to browse (navigate) the Trips table .121
Building the maintenance action page .124
Linking the Trip Detail page to the Trip Search page .125

Summary .128
In the next lesson .128

LESSON 6 Adding and Updating SQL Data. 129

Completing the Trip Maintenance application. .130
Writing code to save new trips to the database .130
Updating a SQL row using cfupdate. .136
Linking the Trip Edit page to the main page .138
SQL Update .140
Updating multiple records .141
Summary .142

INDEX . 143
Contents v

vi Contents

ABOUT THIS BOOK
Getting Started Building ColdFusion MX Applications is intended for anyone who wants to
learn how to use ColdFusion MX to create web applications.

This book consists of two parts:
• Part I introduces related web technologies and explains how ColdFusion works. This

part also introduces the ColdFusion Markup Language (CFML), basic database
concepts, and information about how to configure your development environment
for the tutorial in Part II of this book.

• Part II provides a complete tutorial of everything you need to know to build a sample
ColdFusion application. It consists of six lessons. Ideally, you should work through
each of the lessons in the order they are presented.

Contents

• Developer resources .. viii

• About Macromedia ColdFusion MX documentation.. ix

• Getting answers ... x

• Contacting Macromedia .. x
vii

Developer resources
Macromedia, Inc. is committed to setting the standard for customer support in developer
education, documentation, technical support, and professional services. The
Macromedia website is designed to give you quick access to the entire range of online
resources. The following table shows the locations of these resources:

Resource Description URL

Macromedia
website

General information about Macromedia
products and services

http://www.macromedia.com

Information on
ColdFusion

Detailed product information on
ColdFusion and related topics

http://www.macromedia.com/coldfusion

Macromedia
ColdFusion
Support Center

Professional support programs that
Macromedia offers

http://www.macromedia.com/support/
coldfusion

ColdFusion
Online Forums

Access to experienced ColdFusion
developers through participation in the
Online Forums, where you can post
messages and read replies on many
subjects relating to ColdFusion

http://webforums.macromedia.com/
coldfusion/

Installation
Support

Support for installation-related issues for
all Macromedia products

http://www.macromedia.com/support/email/
isupport

Training Information about classes, on-site training,
and online courses offered by Macromedia

http://www.macromedia.com/support/training

Developer
Resources

All the resources that you need to stay on
the cutting edge of ColdFusion
development, including online discussion
groups, Knowledge Base, technical
papers, and more

http://www.macromedia.com/desdev/
developer/

Reference Desk Development tips, articles,
documentation, and white papers

http://www.macromedia.com/v1/developer/
TechnologyReference/index.cfm

Macromedia
Alliance

Connection with the growing network of
solution providers, application developers,
resellers, and hosting services creating
solutions with ColdFusion

http://www.macromedia.com/partners/
viii About This Book

About Macromedia ColdFusion MX documentation
The ColdFusion documentation is designed to provide support for the complete
spectrum of participants. The print and online versions are organized to let you quickly
locate the information that you need. The ColdFusion online documentation is provided
in HTML and Adobe Acrobat formats.

Printed and online documentation set
The ColdFusion documentation set consists of the following titles:

Book Description

Installing ColdFusion
MX

Describes system installation and basic configuration for Windows
NT, Windows 2000, Solaris, Linux, and HP-UX.

Administering
ColdFusion MX

Describes how to use the ColdFusion Administrator to manage the
ColdFusion environment, including connecting to your data
sources and configuring security for your applications,

Developing ColdFusion
MX Applications with
CFML

Describes how to develop your dynamic web applications,
including retrieving and updating your data, using structures, and
forms.

Getting Started
Building ColdFusion
MX Applications

Contains an overview of ColdFusion features and application
development procedures. Includes a tutorial that guides you
through the process of developing an example ColdFusion
application.

Using Server-Side
ActionScript in
ColdFusion MX

Describes how Macromedia Flash movies executing on a client
browser can call ActionScript code running on the ColdFusion
server. Includes examples of server-side ActionScript and a syntax
guide for developing ActionScript pages on the server.

Migrating ColdFusion 5
Applications

Describes how to migrate a ColdFusion 5 application to
ColdFusion MX. This book describes the code compatibility
analyzer that evaluates your ColdFusion 5 code to determine any
incompatibilities within it.

CFML Reference Provides descriptions, syntax, usage, and code examples for all
ColdFusion tags, functions, and variables.

CFML Quick
Reference

A brief guide that shows the syntax of ColdFusion tags, functions,
and variables.

Working with Verity
Tools

Describes Verity search tools and utilities that you can use for
configuring the Verity K2 Server search engine, as well as creating,
managing, and troubleshooting Verity collections.

Using ClusterCATS Describes how to use Macromedia ClusterCATS, the clustering
technology that provides load-balancing and failover services to
assure high availability for your web servers.
About Macromedia ColdFusion MX documentation ix

Viewing online documentation
All ColdFusion documentation is available online in HTML and Adobe Acrobat Portable
Document Format (PDF) files. To view the HTML documentation, open the following
URL on the web server running ColdFusion: http://web_root/cfdocs/dochome.htm.

ColdFusion documentation in Acrobat format is available on the ColdFusion product
CD-ROM.

Getting answers
One of the best ways to solve particular programming problems is to tap into the vast
expertise of the ColdFusion developer communities on the ColdFusion Forums. Other
developers on the forum can help you figure out how to do just about anything with
ColdFusion. The search facility can also help you search messages from the previous 12
months, allowing you to learn how others have solved a problem that you might be
facing. The Forums is a great resource for learning ColdFusion, but it is also a great place
to see the ColdFusion developer community in action.

Contacting Macromedia

Corporate
headquarters

Macromedia, Inc.
600 Townsend Street
San Francisco, CA 94103

Tel: 415.252.2000
Fax: 415.626.0554

Web: http:// www.macromedia.com

Technical support Macromedia offers a range of telephone and web-based
support options. Go to http://www.macromedia.com/support/
coldfusionfor a complete description of technical support
services.

You can make postings to the ColdFusion Support Forum
(http://webforums.macromedia.com/coldfusion) at any time.

Sales Toll Free: 888.939.2545

Tel: 617.219.2100
Fax: 617.219.2101

E-mail: sales@macromedia.com

Web: http://www.macromedia.com/store
x About This Book

PART I

Welcome to ColdFusion
Part I provides an introduction to ColdFusion. It defines ColdFusion and
provides an overview of the ColdFusion Markup Language (CFML) . It
also provides generic database concepts, and information about how to
prepare your development environment for using the tutorial in Part II of
this book.

Introducing ColdFusion MX ..3

CFML Basics.. 13

Database Fundamentals...29

Configuring Your Development Environment ... 35

CHAPTER 1

Introducing ColdFusion MX
This chapter introduces the core technologies that are the foundation for Macromedia
ColdFusion MX. It provides a basic understanding of the Internet, web servers, URLs,
HTML, and JavaScript. In addition, it introduces the basic concepts about ColdFusion
MX, how it works, and the various components that comprise it.

Contents

• The Internet and related technologies .. 4

• What is ColdFusion MX? .. 8

• Using ColdFusion MX with Macromedia Flash MX.. 11
3

The Internet and related technologies
ColdFusion MX is tightly integrated with the Internet and the World Wide Web. For a
better understanding of ColdFusion MX, the following sections provide a basic
description about the Internet and its related technologies.

The Internet
One way to think of the Internet is to picture it as a wide-area network that spans
multiple geographic locations. Each location in this enormous network is comprised of a
group of computers that are relatively close in proximity to each other and are connected
by hardware and cabling.

Users communicate from one location to another using a communication protocol
known as IP (Internet Protocol). This protocol, running on each computer connected to
the Internet, ensures that communication breakdowns do not occur and that the
networked computers can communicate and exchange data properly with each other.

Every computer connected to the Internet has a unique IP address. If duplicate IP
addresses existed, information using a given address could end up in the wrong place. It
would be like using the same street address for two residences. As a sender of
information, you would never know if the intended receiver did receive your
information.

Internet applications

Software applications that run on the Internet are known as Internet applications. The
following table lists some of the most popular Internet applications:

Internet applications communicate across the Internet by using IP. IP transmits
application data in small packets to a destination IP address. The receiving host processes
the information that it receives.

Application Description

WWW World Wide Web. The web is a hypertext information system. It lets you read
and navigate to text and visual information in a nonlinear way that is based on
what you want to read next. This freely available information is linked
together in various ways on the Internet and is available for you to browse
whenever you want.

A website is a location on the World Wide Web. When you view a page, your
browser connects to that website to get the information.

E-mail Electronic mail. E-mail programs, such as Microsoft Outlook, let you send
and receive mail electronically over the Internet.

FTP File Transfer Protocol. This protocol lets you transfer information between
hosts using an FTP site.

Telnet Telnet lets you log on to a computer from a remote location.

NFS Network File System. NFS lets you share files between hosts.
4 Chapter 1 Introducing ColdFusion MX

Intranet applications
An intranet is a private LAN (Local Area Network) or WAN (Wide Area Network) that
lets you use and interact with your Internet-based applications in a secure environment.
These private networks exist in large corporations, small companies, and even home
offices. Private networks let companies and organizations determine who can share their
information and who can access it.

An intranet application is an application that works on a private intranet (network). It
differs from an Internet application only in who can access it and the location of the
client computer accessing it. An intranet application can also operate over a public
Internet. When an intranet application runs on the Internet, the application is called an
Internet application. These terms, Internet applications and intranet applications, are used
interchangeably throughout this book.

Web servers
A web server is a software program that serves web pages to requesting clients. The web
server software runs on any computer. Often people refer to the host running the
web-server software as the web server, and think of it as the hardware. However,
technically, the web server is just the software program and not the hardware.

How a web server and connecting hosts communicate

When a user at a specific IP address requests a file, the web server retrieves that file and
returns it to the requesting IP address. The contents of a file are not important to the web
server. It is the web browser that makes the request and interprets and displays the data in
the file that was returned from the web server.

When you make a request from a web server, an IP connection is made across the
Internet between the client making the request and the host running the web-server
software. As soon as a request is satisfied by the web server, the Internet connection
between the client and the host breaks. A page containing images or links to other pages
all require separate connections. Often, it takes many requests to retrieve all the
information on one web page.

Web pages
The information on the World Wide Web is presented in web pages. You can create web
pages using a series of client-side technologies. A web page can include a variety of
information: text, lists, forms for capturing data, tables for presenting data, scripts that
perform a function, multimedia content that animate pages, and so on.

No matter the content of the web page, the web browser must process and display the
page.
The Internet and related technologies 5

Web browsers
A web browser is a software program residing on a computer that you use to view pages
on and navigate the World Wide Web. When you use a browser to request a page on a
website, that browser is making a web connection to a web server.

As mentioned previously, the web browser processes the web pages that it receives from a
web server and displays the pages to the user. Depending on the browser that you use and
the features it includes, you might be able to play multimedia files, view and interact with
Java applets, read your e-mail, or use other advanced features.

Some of the most popular web browsers today are Microsoft Internet Explorer, Netscape
Navigator, and Mozilla. Unfortunately, most browsers today parse web pages differently.
Web designers must pay special attention to the way a browser behaves, or users might
not see the pages as the designers intended. Therefore, web designers test their pages on
multiple browsers before publishing them on their website.

HTML

Web page authors create plain text files using the Hypertext Markup Language. This
language, known as HTML, consists of a series of simple-to-learn tags. You can use these
tags to mark up a page of text. Tags can indicate page elements, structure, formatting,
hypertext links to other locations, and so on. Web browsers read the HTML tags and
format the text and styles that appear on the computer screen.

HTML tags usually have a starting and ending tag, surrounding the text that they affect.
The starting tag turns on a feature (heading, bold, and so on), and the ending tag turns it
off. All ending tags have a forward slash (/) preceding the tag name.

Most HTML tags look like this:

<TheTagName>text</TheTagName>

The tag name is always enclosed in angle brackets (<>) and is case-insensitive, which
means that you can specify the tag name in uppercase, lowercase, or mixed case.

Most web browsers let you view the source of an HTML page. This option is usually
located in a menu or a button.

JavaScript

Web developers write JavaScript to create small programs that run in the browser.
JavaScript is one of the most popular client-side scripting languages today. It is supported
by almost all browsers on the market. Web developers use JavaScript to do these actions:
• Validate user actions.
• Create scrolling messages in a browser’s status bar.
• Animate text or images.

JavaScript can be inserted in the HTML file. HTML uses tags to mark the start and end
of the code. The <script> tag tells the browser that the following chunk of text, bounded
by the closing </script> tag, is not HTML, but rather script code to be processed.

Although using JavaScript seems much like inserting HTML content, JavaScript is more
difficult to learn than HTML. For more information about JavaScript, see any JavaScript
primer.
6 Chapter 1 Introducing ColdFusion MX

URLs
Every piece of information on the World Wide Web has a unique address. This address is
called a Uniform Resource Locator, or URL. A URL is a pointer to some bit of data on
the web. This information might include a web document, a file on a FTP site, a posting
on Usenet, or even an e-mail address. URLs contain information about the following:
• How to get the information (what protocol to use: FTP, HTTP, and so on)
• The Internet host name to contact (for example, www.macromedia.com; http://

localhost/mysite; or ftp.mysite.com)
• The directory or other location to locate the requested information

In addition, you use special URLs to send e-mail and for using the Telnet program.

Understanding web application servers
As explained previously, web browsers make requests, and web servers fulfill those
requests by returning the requested information to the browser. This information is
usually HTML files, as well as other types.

When you think about it, web servers capabilities are limited because all they do is wait
for requests to arrive and attempt to fulfill those requests as soon as possible. Web servers
do not let you do the following tasks:
• Interact with a database.
• Serve up customized information based on user preferences or requests.
• Validate user actions.

Web servers, basically, locate information and return that information to a web browser.

To extend the capabilities of a web server, you need a web application server. A web
application server is a software program that lets the web server do more tasks, like those
listed in the previous paragraph.

How a web server and web application server work together

The following steps explain how a web server processes a page that also needs processing
by a web application server:

1 The user requests a page by typing a URL in a browser, and the web server receives
the request.

2 The web server looks at the MIME type (or file extension) to determine whether a
web application server must process the page. Then one of the following actions
occur:

• If the MIME type indicates that the file is a simple web page (typically an HTM
extension), then the web server fulfills the request and sends the file to the
browser.

• If the MIME type indicates that the requested file is a page that a web application
server must process (CFM or CFC extension for ColdFusion requests), then the
web server passes it to the web application server. The web application server
processes the page and sends the results to the web server, which returns those
results to the browser. The following figure shows this process:
The Internet and related technologies 7

Web application servers process code in a page that a browser and web server cannot
interpret. The web server recognizes these requested pages by the file extension and
forwards it to the web application server for action. The web application server interprets
the programming instructions in the page and generates output that a web browser can
interpret. Then the web server returns the output to the browser.

By using a web application server, web developers can build highly interactive and
data-rich sites, such as the following:
• Create shopping carts and e-commerce sites.
• Query other database applications for data.
• Dynamically populate form elements.
• Respond with e-mail immediately after a user submits a form.

What is ColdFusion MX?
ColdFusion MX is a powerful web application server that lets you create robust sites and
applications without a long learning curve. ColdFusion MX does not require coding in
traditional programming languages (for example, C/C++, Java, XML), although it
supports these traditional programming languages.

ColdFusion MX consists of the following core components:
• ColdFusion application server
• ColdFusion Markup Language (CFML)
• ColdFusion Administrator

The following sections describe these core components in more detail.
8 Chapter 1 Introducing ColdFusion MX

The ColdFusion application server
The ColdFusion application server is a software program that resides on the same
computer as your web server software. It is the program that parses (reads and interprets)
and processes supplied instructions. These instructions are passed to ColdFusion through
ColdFusion pages, which use a CFM or CFC file extension. A ColdFusion page looks
like an HTML page but contains special tags that instruct the ColdFusion server to
perform specific operations.

How ColdFusion processes pages

The following steps explain how the ColdFusion server processes a ColdFusion page:

1 The ColdFusion server looks at the content of the page and searches for the following
ColdFusion instructions:

• Tags that begin with cf.
• Variables and functions that are always surrounded by pound signs (#).

2 If the Coldfusion server finds any HTML or plain text in the page, the ColdFusion
server returns it to the web server untouched.

3 The ColdFusion server processes all the ColdFusion instructions found, and returns
any remaining results to the web server. The web server then sends the entire output
to the browser.

The ColdFusion Markup Language
ColdFusion Markup Language (CFML) is a a tag-based language similar to HTML that
uses special tags and functions. With CFML you can enhance your standard HTML files
with database commands, conditional operators, and high-level formatting functions,
and rapidly produce easy-to-maintain web applications.

CFML looks similar to HTML: it includes start and end tags, and each tag is enclosed in
angle brackets. All ending tags are preceded with a forward slash (/) and all tag names are
preceded with cf; for example:

<cfstarttagname> </cfendtagname>

Building applications with CFML

You build ColdFusion applications as a series of pages that use CFML. Developers can
extend this language by creating their own custom tags or user-defined functions (UDF),
or by integrating COM, C++, and Java components (such as JSP tag libraries).

Interacting with data sources

ColdFusion applications can interact with any database that supports a JDBC
technology-based driver. A JDBC technology-based driver uses an Application
Programming Language (API) to execute SQL statements to databases on most
platforms. However, ColdFusion is not limited to JDBC data sources. You can also
interact with existing Open Database connectivity (ODBC) data sources by using
ODBC Socket, a driver that interacts with an existing ODBC driver.
What is ColdFusion MX? 9

Development tools

While you can code your ColdFusion application with NotePad or any HTML editor,
Macromedia recommends that you build your applications using Macromedia
Dreamweaver MX. Dreamweaver MX offers features and wizards that enhance
ColdFusion development. For more information about Dreamweaver MX, see Chapter
4, “Configuring Your Development Environment” on page 35.

The ColdFusion MX Administrator
You use the ColdFusion MX Administrator to configure and maintain the ColdFusion
application server. It is a web-based application that you can access using any web
browser, from any computer with an Internet connection.

You can manage the following configuration options with the ColdFusion Administrator:
• ColdFusion data sources
• Debugging output
• Server settings
• Application security

For further details about the ColdFusion Administrator, see Installing ColdFusion MX or
Administering ColdFusion MX.
10 Chapter 1 Introducing ColdFusion MX

Using ColdFusion MX with Macromedia Flash MX
Macromedia Flash MX is designed to overcome the many limitations of HTML and
solve the problem of providing efficient, interactive, user interfaces for Internet
applications. ColdFusion MX is designed to provide a fast efficient environment for
developing and providing data-driven Internet applications.

By using ColdFusion MX and Flash MX together, you can easily create complete visually
interactive applications for the Internet. ColdFusion MX provides a native Flash
connectivity that ensures visual applications created with Flash MX can easily and
securely interact with ColdFusion. Flash MX clients communicate efficiently with
ColdFusion by using an Action Message Format protocol over HTTP. This protocol
provides fast, lightweight, binary transfer of data between the Flash client and
ColdFusion.

By using the following features of ColdFusion MX and Flash MX, you can create
efficient data-driven Internet applications with visually interactive user interfaces:
• Flash MX ActionScript commands Lets you connect to ColdFusion components

(CFC) and ColdFusion pages.
• Flash MX development application debugger Lets you trace your application

logic as it executes between Flash and ColdFusion.
• ColdFusion MX Server-Side ActionScript Lets Flash programmers familiar with

ActionScript create ColdFusion services, such as SQL queries, for use by Flash clients.

For more information about using Server-Side ActionScript in ColdFusion MX, see
Using Server-Side ActionScript in ColdFusion MX. For more information about developing
Flash application in ColdFusion, see Developing ColdFusion MX Applications with CFML.
For more information about using Flash MX, go to Macromedia on the web
(www.macromedia.com).
Using ColdFusion MX with Macromedia Flash MX 11

12 Chapter 1 Introducing ColdFusion MX

CHAPTER 2

CFML Basics
This chapter introduces the basic elements of CFML, including how to create
ColdFusion pages, and use variables, functions, conditional processing, and form
processing.

Contents

• Working with ColdFusion pages.. 14

• Understanding CFML elements... 16

• Working with CFML expressions .. 21

• Understanding conditional processing ... 25

• Processing form data.. 26

• Commenting your code... 28
13

Working with ColdFusion pages
As discussed in Chapter 1, ColdFusion pages are plain text files that you use to create web
applications. You can create your ColdFusion applications by writing all the code
manually or by using wizards (provided with some editors) to generate the majority of
the code for you.

You can use the following editors to create your ColdFusion pages:
• Macromedia Dreamweaver MX (discussed in Chapter 4)
• Macromedia HomeSite+ (discussed in Chapter 4)
• Macromedia ColdFusion Studio
• Any HTML editor
• Windows Notepad
• VI or EMACS (UNIX® systems)

The best choice for creating ColdFusion pages is Macromedia Dreamweaver MX.
Dreamweaver MX includes many CFML features for building applications, such as rapid
visual development, robust CFML editing, and integrated debugging. Dreamweaver MX
also includes a copy of HomeSite+ for users who are familiar with developing their
application code using ColdFusion Studio or HomeSite 5. HomeSite+ combines all the
features of ColdFusion Studio and HomeSite 5, along with support for the latest
ColdFusion MX tags.

Note: This book shows how to create ColdFusion applications by writing your code
manually. It does not address how to create ColdFusion pages by generating code with
wizards. For information about using wizards to generate CFML code, see the product
documentation for Dreamweaver MX and HomeSite+.

Creating a ColdFusion page
Creating a ColdFusion page involves using tags and functions. The best way to
understand this process is to create a ColdFusion page.

In the following procedure, you will create a simple ColdFusion page by using HTML
tags, one ColdFusion tag, and two ColdFusion functions. The following table briefly
explains the ColdFusion tags and functions:

Note: ColdFusion tags and functions are considered primary elements of CFML. You will
learn more about these elements and others later in this book.

Element Description

Now() A function supported in CFML that you can use to retrieve information
from your system.

You will use the Now() function in the following procedure to return the
current date that is retrieved from your system.

DateFormat() A function that instructs ColdFusion to format the date returned by the
Now() function.

cfoutput A ColdFusion tag that you use to return dynamic data (data retrieved
from a database) to a web page.

You will use the cfoutput tag in the following procedure to display the
current date retrieved from your system.
14 Chapter 2 CFML Basics

To create a ColdFusion page:

1 Open your editor and create a blank file.

2 Enter the following code on the page:
<html>
<head>
<title>A ColdFusion Page</title>
</head>
<body>
Hello world, this is a ColdFusion page.

<cfoutput> Today’s date is #DateFormat(Now())# </cfoutput>
</body>
</html>

Saving your ColdFusion page

In order for the ColdFusion server to process the page, you must save the ColdFusion
page on a computer where the ColdFusion server is installed. If you are creating your
pages on a local server (on which ColdFusion is running), then you can save the pages
locally; if you are using a remote server, then you must save your pages on that server.

To publish ColdFusion pages on the Internet, you must save the pages under the web-root
directory.

To save the code you just typed (to create a ColdFusion page):

1 Create a new directory called test under the web_root directory.

2 In the test directory, save the file as cfpage.cfm.

Browsing your code

To ensure that the code you wrote is working as expected, you must view the ColdFusion
page in a browser. The following procedure describes how to view the ColdFusion page
that you created earlier.

To view the ColdFusion page:

1 Open a web browser and go to the following URL:

http://127.0.0.1/test/cfpage.cfm

The address 127.0.0.1 refers to the localhost and is only valid when you view pages
locally. The URL for a remote site would include the IP address of the server where
ColdFusion is installed; for example: http://<serveripaddress>/test/cfpage.cfm.
Working with ColdFusion pages 15

The following figure shows the cfpage.cfm in the browser:

2 Do the following tasks:

a View the source code that was returned to the browser. In most browsers, you can
view the source by right-clicking on page then selecting View Source.

b Compare the browser source code with the source code that appears in your
editor. Notice that the CFML tags were processed on the page but did not appear
in the source that was returned to your browser.

As described in Chapter 1, ColdFusion processes all the instructions (CFML tags
and functions) it receives on a page, and then returns the results of the
instructions that your browser can interpret and display.

Understanding CFML elements
CFML consists of two primary language elements: tags and functions. Tags let you
perform operations such as accessing a database. Functions can return data and do other
operations like retrieving the system date. Almost everything you want to accomplish
with ColdFusion will involve using tags and functions.

You will use another important element known as a variable. Variables are an important
part of most programming languages and are equally important with CFML. Variables
let you store information in memory and enable you to pass data.

The following sections describe how to use these three elements.

Tags
You can think of tags as commands that you use to instruct the ColdFusion server to
perform operations. These operations might include selecting data from a database,
reading a file that resides on the server, or showing the results of processing.

Tag syntax

As discussed in Chapter 1, ColdFusion tags are similar to HTML tags. ColdFusion tags
are enclosed in angle brackets and often have a start and end tag. The start tag encloses
the tag name in brackets, like this:

<tagname>
16 Chapter 2 CFML Basics

Most often the end tag encloses the tag name in brackets and includes a slash (/), like
this:

</tagname>

The information processed by ColdFusion is placed between the start and end tag, like
this:

<tagname>
info to be processed ...
</tagname>

ColdFusion tags, for the most part, share these common characteristics:
• All start with cf.
• A start and end tag.
• Use of attributes (like html tags), and most attributes have values.

Some ColdFusion tags, such as cfset, omit the closing tag. This type of tag uses one set
of angle brackets and places all the required information between the left (<) and right (>)
angle brackets, like this:

<cfset name="bob">

For a complete list of tags and their syntax, see CFML Reference.

Tag attributes

Tag attributes instruct the ColdFusion server about the details of an operation. For
example, to update a database table, the server needs to know specifics about the
database, such as the database name and the table name. The code required to write this
type of statement might look like this:
<cfupdate datasource="mydb" tablename="mytable">

where datasource and tablename are attributes of the cfupdate tag and "mydb" and
"mytable" are attribute values.

For a complete list of tags and their attributes, see CFML Reference.

Functions
Typically, a function acts on data. It can generate a value or a set of values, usually from
some input. You can perform the following operations (actions) with functions:
• Manipulate data and time values
• Examine a value or variable
• Display and format information
• Manipulate string data
• Retrieve system information and resources
• Perform mathematical operations

Using functions on values

Usually, a function performs an operation on a value, and the value can include the value
of a variable. For example: to format the value of a variable containing a value in dollars,
the code to write this statement might look like this:

#DollarFormat(price)#
Understanding CFML elements 17

The DollarFormat function returns a value as a string and formats that value with two
decimal places, thousand separator, and dollar sign. The pounds signs (#) around the
function instruct ColdFusion to evaluate the content between the pound signs and
display the value.

Functions and parentheses

All functions have parentheses, regardless of whether the function acts on data. Consider
the following function:

#Now()#

If you put anything inside the parentheses of the Now() function, an error would occur.
The Now() function returns an unformatted date and time. However, you can format the
results of this function with other functions, such as the DateFormat() or
TimeFormat() functions.

Nesting functions

Functions can generate data as well as act on data. Consider the following example:

#DateFormat(Now(), "mm/dd/yyyy")#

In this example, the Now() function generates the date, and then the DateFormat
function formats the date.

Functions and pound signs

You use pound signs (#) with functions to display the results of a function on the page.
Pound signs tell the ColdFusion server to evaluate the content between the pound signs
and display the value, for example:

<cfoutput>
Hello world,

Today’s date is #DateFormat(Now(), "mm/dd/yyyy")#
</cfoutput>

The following figure shows the output of this example:
18 Chapter 2 CFML Basics

If you did not include the pound signs around the DateFormat(Now(), "mm/ddyyy")
function, the output for the previous example would display as follows:

For more information about how to use pound signs with functions, see Developing
ColdFusion MX Applications with CFML.

Variables
Variables let you store data in memory on the server. Variables always have a name and a
value. You can assign a value to a variable, or you can instruct ColdFusion to assign
variable values based on data that it retrieves from a data source, such as a database table.

Naming variables

You must use the following rules for naming ColdFusion variables:
• Names are case insensitive (uppercase, lowercase, or mixed case).
• Names can contain only letters, numbers, and underscore characters.
• Each name must begin with a letter.
• Special characters (such as double quotation marks ("), reserved names (such as

functions and tags), and spaces are not allowed.

Ways to use variables

You can use a variable for the following purposes:
• Store data collected from a form.
• Store results of a calculation (such as the number of database records returned).
• Use as input to a function.

Creating variables with the cfset tag
ColdFusion lets you create variables as you need them. You create the variable (name and
value) using the cfset tag. The syntax for this tag is:

<cfset variable_name = value>

In the following examples, the variables are assigned a string literal value. All string literal
values are surrounded by double quotation marks.

<cfset my_first_name = "Kaleigh">
<cfset my_last_name = "Smith">
Understanding CFML elements 19

In the next example, ColdFusion uses the values of the my_first_name and
my_last_name variables to set the value for the my_full_name variable in the last line of
code. The ampersand (&) string operator joins the variables, and the space surrounded by
double quotation marks (" ") adds a space between the variables.

<cfset my_first_name = "Kaleigh">
<cfset my_last_name = "Smith">
<cfset my_full_name = variables.my_first_name & " " & variables.my_last_name>

Tip: String values assigned to a variable must be enclosed in single (’) or double (")
quotation marks. Numeric or Boolean values assigned to a variable do not require single or
double quotation marks.

So far all the variable examples shown have been about local variables. Local variables are
variables that you can use only on the current ColdFusion page. As shown in the previous
example, a Variables prefix was used to reference an existing variable on the page. Using a
prefix when referencing a variable is important because ColdFusion supports many types
of variables. The syntax for referencing a local variable is as follows:

variables.variablename

Because ColdFusion lets you use the same name with variables of more than one type,
ColdFusion relies on scope referencing. In scope referencing, you preface the variable’s
name with the scope when you refer to that variable.

Other variables and their scope

ColdFusion supports many types of variables. Each type has it own scope, or where it can
be referenced, and its own way of referencing that variable type. The following table
identifies some of the more common types of variables and their prefixes:

You will use these other types of variables in Part II of this book. For additional
information about variables, see CFML Reference.

Displaying variable output
Output is what remains after the ColdFusion server processes the CFML tags on a page.
Usually the output has two parts:
• Information that the user sees (for example, a confirmation message)
• Information that is stored by the server as a result of processing (for example, user

input collected from a form)

Scope Prefix Description

variables

(local variable)

Variables Variables created using cfset or cfparam. Most often you
define the variable on the current page or on a page that you
include using cfinclude.

Form Form Data entered in tags in an HTML form or ColdFusion form
and processed on the action page.

URL URL Variables passed to a page as URL string parameters.

Query QueryName Variables that are named based on the column names that
you select in the database table. The values are created when
you execute the query that selects data from the database.
20 Chapter 2 CFML Basics

One of the tags that ColdFusion provides to display output is the cfoutput tag. The
cfoutput tag instructs ColdFusion to process all the code between the cfoutput start
and end tags. The syntax for the cfoutput tag looks like this:

<cfouput>
{normal html, text, and coldfusion processing instructions}
</cfoutput>

To return the value of a variable, you must always surround the variable name with
pound signs (#) and place the variable name between the cfoutput start and end tags.
For example, the following code creates a variable and instructs the ColdFusion server to
return the value of the variable.

<cfset my_first_name = "Kaleigh">
<cfset my_last_name = "Smith">
<cfset my_full_name = variables.my_first_name & " " & variables.my_last_name>

<cfoutput>
#variables.my_full_name#
</cfoutput>

The following is the output:

Kaleigh Smith

Working with CFML expressions
Expressions are an important part of the ColdFusion language. Expressions are a
collection of different elements, ColdFusion variables, functions, and operators. You can
think of them as strings of text that consist of one or more of the following elements:
• Literal text (string), numbers, dates, and other values
• Variables
• Functions
• Operators (& for joining statements, + for addition, and so on)

Many examples of expressions were shown in this chapter; for example:
• #variables.my_full_name#
• DateFormat(Now())
• my_first_name= "Kaleigh"

When you build expressions in ColdFusion, you can include simple and complex
elements; how you represent these elements determines how ColdFusion processes your
program.

Building expressions
In ColdFusion, you build expressions as you need them. The expressions can include
simple elements, such as the expressions shown previously, or they can include complex
elements, such as arithmetic functions, strings, and decision operators. (You build some
complex expressions in Part II of this book.)
Working with CFML expressions 21

As mentioned, it is important that elements are identified properly in your expression so
ColdFusion processes them as expected, and you can avoid unnecessary errors. When
writing expressions, consider the following coding practices:
• Character case consistency
• When to use the pound (#) sign
• When quotation marks are needed

Specifying a consistent character case

Because the ColdFusion server is case-insensitive, you can write expressions using all
uppercase, all lowercase, or mixed case. However, for code readability and consistency,
you should use the same character case in all your programs. If you write your programs
using the same case rules, you might prevent errors from occurring when you combine
CFML on a page with case-sensitive languages, such as JavaScript.

Specifying pound signs to denote functions or variables

In ColdFusion, you specify pounds signs to denote functions and variables within a
string of text. You use pounds signs to show the results of the function or variable on the
page. Pounds signs instruct the ColdFusion server to evaluate the function (or variable)
between the pound signs and display the value. The value of the function (or variable)
appears in the browser as a result.

The following list identifies some common ways to use pound signs:
• In the following example, you include the pound signs to return the value to a page:

<cfoutput> Hello #variables.my_first_name# </cfoutput>

If you omit the pound signs, the text, not the value, appears on the page.

• In the following example, you do not include the pound signs because you are using
cfset to assign one variable’s value to another value:
<cfset my_full_name = variables.my_first_name & " " & variables.my_last_name>

• To display a pound sign on a page, you must designate the pound sign as a literal
character. You do this by using two pound signs (##); for example:
<cfoutput>
##1: Your name.
</cfoutput>

The result is the following output:

#1. Your name.

For more information and examples on using pound signs in expressions, see Developing
ColdFusion MX Applications with CFML.
22 Chapter 2 CFML Basics

Specifying quotation marks around values

When assigning literal values to variables, you must surround the literal value with
double quotation marks or single quotation marks. ColdFusion interprets the content
between the quotation marks as a literal value and assigns that value to the variable; for
example:

<cfset my_first_name = "Kaleigh">
<cfset my_last_name = "Smith">
<cfset my_age = 5>

ColdFusion instantiates the variable my_first_name to the string literal Kaleigh.
Further, Smith is assigned to the variable my_last_name and 5 is assigned to age.

When referencing a variable by its name, you do not surround the name with quotation
marks; for example:

<cfset the_string = "My name is " & variables.my_first_name &
" and my age is " & variables.my_age>

My name is is literal text and, you therefore, surround it with quotation marks. The
variable references variables.my_first_name and variables.my_age are not
surrounded by quotation marks. ColdFusion uses the values of the referenced variables
(Kaleigh and 5, respectively) when assigning the value to the variable the_string.

To display quotation marks on a page as literal characters, you must double the quotation
marks; for example:

<cfset mystring = "We all shouted ""Happy Birthday"" when he entered the room.">
<cfoutput>
#mystring#
</cfoutput>

The result is the following output:

We all shouted "Happy Birthday" when he entered the room.

Specifying operators in expressions

In ColdFusion, you use operators to test conditions; for example, you use the IS operator
to test for equality. When using operators in expressions, you must only use supported
logical operators that ColdFusion can interpret properly. For example, if you use the
greater than operator (>)or the less than operator (<), ColdFusion interprets these
operators as the start or end of a tag.

The following table lists the nonsupported logical operators and their equivalent
ColdFusion operators:

Nonsupported
logical operator

Equivalent ColdFusion decision
operator Description

= IS, EQUAL, EQ Tests for equality.

< LT, LESS THAN Tests for less than.

<= LTE, LE,
LESS THAN OR EQUAL TO

Tests for less than or equal to.
Working with CFML expressions 23

Arithmetic operators

The following table lists the arithmetic operators that ColdFusion supports:

String operator

The following table describes the one ColdFusion string operator that is a concatenation
operator:

> GT
GREATER THAN

Tests for greater than.

>= GTE,
GREATER THAN OR EQUAL TO

Tests for greater than or equal to

< > IS NOT, NEQ,
NOT EQUAL

Tests for nonequality.

CONTAINS Tests whether a value is
contained within a second
value.

DOES NOT CONTAIN Tests whether a value is not
contained within a second
value.

Operators Description

+, -, *, / The basic arithmetic operators: addition, subtraction, multiplication, and
division. In the case of division, the right operand cannot be zero.

+, - Unary arithmetic operators for setting the sign of a number either positive
or negative (+ or -).

Mod Returns the remainder (modulus) after a number is divided by a divisor.
The result has the same sign as the divisor. The right operand cannot be
zero; for example: 11 MOD 4 is 3.

\ Divides two integer values. Use the \ (trailing slash) to separate the
integers. The right operand cannot be zero; for example: 9 \ 4 is 2.

^ Returns the result of a number raised to a power (exponent). Use the ^
(caret) to separate the number from the power. The left operand cannot be
zero; for example: 2 ^ 3 is 8.

Operator Description

& Concatenates strings.

Nonsupported
logical operator

Equivalent ColdFusion decision
operator Description
24 Chapter 2 CFML Basics

Understanding conditional processing
To this point, all the coding examples shown are considered linear coding examples.
Linear code is when ColdFusion executes code starting with the first line on the page,
and processes every line in order. Although you will use linear code in your applications,
you will often write code that performs various actions based on conditions, such as the
following:
• Determine if a user entered a value in a form field.
• Display results based on user input.
• Display messages based on the time of day.

You use conditional processing to customize the behavior of your application.
Conditional processing facilitates decision making and lets you control how the code on
a page is processed.

In ColdFusion, you implement conditional processing with flow control tags. These tags
are similar to other programming language control elements, such as if, then, and else.

Conditional processing tags

ColdFusion provides several tags that let you control how a page is processed. When
using these tags, you can facilitate decision making in your code. The most fundamental
tags used to control code execution are the cfif, cfelse, and cfelseif tags. Because
you will see and use these tags in Part II of this book, the following sections provide a
basic introduction on how to use these tags. For more information about other
conditional processing tags, including tags for looping, see Developing ColdFusion MX
Applications with CFML.

Using cfif to evaluate true or false conditions

To create statements that let you evaluate conditions and perform an action based on the
result, you use the cfif tag to create a cfif statement. The basic syntax for a cfif
statement is as follows:

<cfif expression>
HTML and CFML tags executed if expression is True.
</cfif>

In the previous example, ColdFusion only executes the code inside the cfif statement if
the expression evaluates to true. To perform actions if the expression is false, you can use
the cfelse tag. For example, if the following cfif expression evaluates to false, then the
code between the cfelse tag and the cfif tag is processed:

<cfif expression>
HTML and CFML tags executed if expression is True.

<cfelse>
HTML and CFML tags executed if expression is False.

</cfif>
Understanding conditional processing 25

Using cfelseif to evaluate multiple expressions

To evaluate multiple expressions in a cfif statement, you can use cfelseif and cfelse
in your statement, for example:

<cfif expression 1>
HTML and CFML tags executed if expression 1 is True.

<cfelseif expression 2>
HTML and CFML tags executed if expression 2 is True.

<cfelse>
HTML and CFML tags executed for expression(s) that is False.

</cfif>

The following example shows you how you can evaluate multiple expressions using these
tags. In this example, you created a form in which users can enter their state to determine
their state tax:

<cfoutput>
<cfif form.state IS "MA">

#form.state# State Tax: 8.5%
<cfelseif form.state IS "VA">

#form.state# State Tax: 8.2%
<cfelse>

#form.state# State Tax Unknown
</cfif>
</cfoutput>

The output of this cfif statement is based on the value entered by the user. If the user
enters MA in the state form field, the state tax results returned is 8.5%. If the user enters
VA in the state form field, the state tax results returned is 8.2%. If the user enters any
other state in the state form field, State Tax Unknown is returned.

Processing form data
Virtually all web applications that gather and write information to a database use a form
to accomplish that task. Forms let you collect information from a user (using an order
form, registration form, and so on) and write that information to a database. Like
HTML, there are two independent steps for creating a form in ColdFusion:

1 Creating the layout for the form itself.

2 Writing the code to process the submitted information.

Form processing
Every form that you create in ColdFusion consist of two parts: the form page and the
action page.These two pages work together to process user input. The form page
contains the user interface elements, such as input fields, and radio buttons. The action
page handles the processing of the form page data.
26 Chapter 2 CFML Basics

When a user submits a form, the form values are stored in form variables and sent to the
action page for processing. The following figure shows the relationship between the form
page and action page:

In order for the form page to find its corresponding action page, the action statement in
the form tag must be correct. The form tag includes the information that tells the server
where to send the data that it collects. It also tells the server how to send it. To processes
these instructions to the server, the form tag uses the following syntax:

<form action="actionpagename.cfm" method="Post">
HTML and CFML form tags

</form>

The first attribute (action) in the form tag lets you specify where to send the data. The
page that you specify where to send the data is the name of the action page. The second
attribute in the form tag is method. The only method that ColdFusion supports is post.
All ColdFusion forms must set the method attribute to post.

In Part II of this book, you will use ColdFusion form tags to create forms and write
collected values to a database.

Name

E-mail

Submit

Database

form.var1=value1
form.var2=value2

Action
page

The action page contains
the code for form processing
and interaction with
database.

ColdFusion server &
Web server

Form page
Processing form data 27

Commenting your code
As in other programming languages, it is important to include comments in the code.
You should comment your code for the following reasons:
• Commented code is easier to debug than code that is not commented.
• If you describe the code on the page, it is easier to make modifications.
• Commented code tends to be better organized.

Comment tag

The ColdFusion comment tag is similar to the HTML comment tag, except that it has
three dashes instead of two:
<!--- This is a CFML comment --- >

ColdFusion comments are not returned to the browser because the ColdFusion server
processes and omits the comments from the page. The user will never be able to read
your comments.
28 Chapter 2 CFML Basics

CHAPTER 3

Database Fundamentals
This chapter provides a quick overview of relational database concepts and terms. It
describes what a database is and how it is organized. It also discusses the Structured
Query Language (SQL) that you use to interact with databases.

Contents

• Understanding database basics ... 30

• About SQL.. 32

• Using SQL with ColdFusion ... 33
29

Understanding database basics
Even though you do not need a thorough understanding of database management
systems to create ColdFusion applications, you must understand some basic concepts and
techniques about databases. The information in this chapter will get you started with
ColdFusion.

What is a relational database?
A relational database is a structured collection of information that is related to a
particular subject or purpose, such as an inventory database or a human resources
database. You use databases to manage information. Information, such as product name,
cost, and on-hand inventory, is stored in a database. Within the database, you organize
the data into storage containers called tables. Tables are made up of columns and rows.
Columns represent individual fields in a table. Rows represent records of data in a table.
You can think of database tables as grids, as in the following example:

Each field in the table contains one piece of information. In an employee table, for
example, one column contains the employee name, another contains the employee phone
number, and the address, city, state, zip, and salary are all stored in their own columns.
Each record represents one set of related information. For example, an employee table
might store information about one employee per row. The number of rows in a table
represents the total number of table records.

Field (column)

Record
(row)
30 Chapter 3 Database Fundamentals

Understanding relational tables
In a database, you can organize data in multiple tables. For example, if you manage a
database for the Human Resource department, you might have one table that lists all the
employees information and another table that lists all the departments.

Because you have multiple departments for employees, but you would not store the
information about the departments in every employee row for several reasons:
• The department information is the same for each employee in a given department,

however, repeating the department information for each employee is redundant.
Storing redundant data takes up more disk space.

• If the department information changes, you can update one occurrence. All
references to that department are updated automatically.

Storing multiple occurrences of the same data is rarely a good thing. Good relational
database design separates application entities into their own tables. Key values from one
table are often stored in a related table rather than repeating the information. The key
value is used to join the data between the tables to return the complete set of data
required.
Understanding database basics 31

About SQL
SQL Structured Query Language) is a language that lets you communicate with
databases. For example, you can use SQL to retrieve data from a database, add data to a
database, delete or update records in a database, change columns in multiple rows, add
columns to tables, and add and delete tables.

Using SQL to interact with a database
Unlike other computer languages, SQL is made up of a small number of language
elements that let you interact efficiently with a database. Some of the more frequently
used elements include these SQL commands:

In Part II of this book, you will be introduced to the syntax of these commands when you
use them to build a ColdFusion application that interacts with a database. For additional
information about SQL, consult any SQL primer.

Command Description

SELECT Use to retrieve (query) information in a database.

INSERT Use to add records to a database.

UPDATE Use to update information in a database.

DELETE Use to delete information in a database.
32 Chapter 3 Database Fundamentals

Using SQL with ColdFusion
ColdFusion communicates with your data source through a database interface called
JDBC. JDBC is a standard application programming interface (API) for accessing
information from different database systems and different storage formats.

About data sources
A data source is a complete database configuration that uses a JDBC driver to
communicate with a specific database. In ColdFusion, you must configure a data source
for each database file that you want to use. After you configure a data source, the
ColdFusion server is then capable of communicating with that data source through the
JDBC driver.

You configure data sources in ColdFusion by using the ColdFusion administrator.
Chapter 4, “Configuring Your Development Environment” on page 35 discusses how to
configure the sample data source file that is supplied for use with Part II of this book. For
more information about configuring a data source in ColdFusion, see Installing
ColdFusion MX or Developing ColdFusion MX Applications with CFML.

Writing SQL and CFML statements to interact with a data source
After ColdFusion makes a connection to the data source, you can interact with that
database by using SQL and ColdFusion.

To interact with an established data source, you need to include SQL statements in your
CFML statements; for example:

<cfquery name="queryname" datasource="namedbfile">
SELECT FirstName, LastName, DepartmentID
From Employee

</cfquery>

In the previous example, the first attribute of cfquery is the name of the query. The
second attribute of cfquery defines the name of the data source. The SELECT statement
defines the fields (columns) to be retrieved from a tabled named Employee.

CFML tags that interact with a database

The following table lists the CFML tags you can use to interact with a database:

In Part II of this book, you will be introduced to these tags when you use them to interact
with the sample database. For more information about interacting with a database, see
Developing ColdFusion MX Applications with CFML or CFML Reference.

Command Description

cfquery To retrieve (query) information in a database.

cfinsert To add records to a database.

cfupdate To update information in a database.
Using SQL with ColdFusion 33

34 Chapter 3 Database Fundamentals

CHAPTER 4

Configuring Your Development

Environment
This chapter describes how to set up your development environment for the tutorial in
Part II of this book. It specifies the tutorial file structure, and how to configure the
database connection and debugging options in the ColdFusion Administrator.
Additionally, it provides a brief overview of using Macromedia Dreamweaver MX or
Macromedia HomeSite+ for ColdFusion development.

Contents

• Verifying the tutorial file structure ... 36

• Configuring database connection and debugging options 37

• Macromedia development environment tools .. 43
35

Verifying the tutorial file structure
Before you being the tutorial, verify that the configuration of the computer where
ColdFusion is installed matches the file structure described in the following sections.

The files required to complete the Compass Travel tutorial (in Part II of this book) are
installed under the web server root directory. The location of this directory varies,
depending on whether you chose to configure a local third-party web server (such as IIS)
or the ColdFusion stand-alone web server during installation, as follows:
• For local third-party web server configurations, the files are installed in:

webroot\cfdocs\getting_started.
• For stand-alone ColdFusion web server configurations, the files are installed in:

cfusionmx\webroot\cfdocs\getting_started.

The following figure shows the getting_started directory structure:

ColdFusion MX installs two copies of the sample CompassTravel database file. The
working copy is located in the db directory; a backup copy of the file is in the
new_user_database directory.

To ensure that you are working with the original database file, verify that the file in the
db directory has the same date as the backup file in the new_user_database directory. If
the date of the file in the db directory is later than the backup file, replace the file in the
db directory with a copy of the backup database.

Caution: Do not write to the database file in the new_user_ database directory. The
backup file lets multiple users perform the tutorial in Part II of this book.

In each of the database subdirectories, the tutorial provides one sample database file for
Microsoft Windows® users and one sample database file for UNIX® users. Windows
users use a Microsoft Access file, and UNIX users use a PointBase file.

Note: The sample PointBase file consists of two files: compasstravel.dbn and
compasstavel$1.wal. ColdFusion MX uses both of these files to work with the content in the
the sample PointBase database.

Save all the files that you create for the tutorial application (in Part II of this book) in the
my_app directory. This directory contains one subdirectory for images. The image
subdirectory contains the required image files for the tutorial application.
36 Chapter 4 Configuring Your Development Environment

The photos directory contains the required photo files for the tutorial application. The
solutions directory provides sample application files that you can use when building the
tutorial application.

Configuring database connection and debugging options
Prior to ColdFusion development, use the ColdFusion MX Administrator to define the
connection to the sample database file and any optional debugging options.

To access the ColdFusion Administrator, do either of the following:

• Select Start > Programs > Macromedia ColdFusion MX > ColdFusion MX
Administrator.

• Open a browser and go to one of the following URLs:

− External web server users: http://localhost/CFIDE/administrator

− Stand-alone web server users: http://localhost:8100/CFIDE/administrator

Note: If you are acessing the ColdFusion Administrator from a remote client, you must
replace localhost with the IP address of the computer where ColdFusion MX is installed.

The following sections describe how to establish a connection to the sample tutorial
database file and how to enable optional debugging settings.

Configuring the connection to the sample database file
The following procedures describe how to configure a connection to the sample database
file (CompassTravel) using the ColdFusion Administrator. Prior to using Part II of this
book to build the sample application, you must configure the Compass Travel database
connection.

Perform one of the following procedures. The Microsoft Access procedure is for
Windows users. The PointBase procedure is for UNIX users.

To define the connection to the sample Microsoft Access database:

1 In the ColdFusion Administrator, select Data & Services > Data Sources.

2 In the Add New Data Source dialog box, specify the following:

3 Click Add to configure the data source name and driver.

The Macromedia Microsoft Access Data Source dialog box appears.

Field Action

Data Source name
text box

Specify the name CompassTravel.

Note: Ensure that the name of the data source file does not
contain any spaces. If the name contains a space, the data
source connection fails.

Driver drop-down list
box

Select Microsoft Access [Macromedia] .
Configuring database connection and debugging options 37

4 Specify the following:

5 Click Show Advanced Settings and ensure that the settings for CLOB and BLOB are
enabled (checked).

6 Click Submit to complete the data source configuration.

The name CompassTravel appears in the Connected Data Sources dialog box.

7 Click Verify All Connections to ensure that ColdFusion can access this file.

OK appears in the Status column for successful connections.

If the connection to the compass travel data source fails, do the following:

• Verify that the name of the data source file does not contain a space. If it does
contain a space, delete the data source from the Connected Data Source dialog
box. To do this, click the Delete action button associated with the CompassTravel
data source name, then repeat the steps in this procedure to reconfigure this data
source.

• Verify that the path specified for the Compass Travel database file is correct.

To define the sample PointBase database file:

1 In the ColdFusion Administrator, select Data & Services > Data Sources.
The Add New Data Source dialog box appears.

2 Specify the following:

Field Action

Database File text
box

Specify the location of the CompassTravel.mdb file. Click
Browse to locate and select the CompassTravel.mdb file.

By default, ColdFusion MX installs the CompassTravel.mdb file
in one of the following locations:

• For third-party web server configurations:
web_root\cfdocs\getting_started\db

For standalone ColdFusion web server configurations:
cfusionmx\web_root\getting_started\db

Description text box Enter the following:

Database file for Compass Travel tutorial

Field Action

Data Source name
text box

Specify the name CompassTravel.

Note: Ensure that the name of the datasource file does not
contain any spaces. If the name contains a space the data
source connection fails.

Driver drop-down
selection box

Select Other.
38 Chapter 4 Configuring Your Development Environment

3 Click Add to configure the data source name and driver.

The PointBase data source dialog box appears:

4 Specify the following:

5 Click Show Advanced Settings to ensure that the settings for CLOB and BLOB are
enabled (checked).

6 Click Submit to complete the data source configuration.

The name CompassTravel appears in the Connected Data Sources dialog box.

Field Action

JDBC URL Enter the following JDBC URL for the Compass Travel pointbase
files:

jdbc:pointbase:compasstravel,database.home=/<home location>/
wwwroot/cfdocs/getting_started/db

The following is the default home location for stand-alone
ColdFusion web server configurations:

/opt/coldfusionmx/wwwroot/cfdocs/getting_started/db

Driver Class Enter the following driver class:

com.pointbase.jdbc.jdbcUniversalDriver

Driver Name Specify Pointbase.

Username Specify PBPUBLIC.

Password Specify PBPUBLIC.

Description Enter the following:

Database file for Compass Travel tutorial
Configuring database connection and debugging options 39

7 Click Verify All Connections to ensure that ColdFusion can access this file.

OK appears in the Status column for successful connections.

If the connection to the compass travel data source fails, do the following:

• Verify that the name of the data source file does not contain a space. If it does
contain a space, delete the data source from the Connected Data Source dialog
box. To do this, click the Delete action button associated with the CompassTravel
data source name, then repeat the steps in this procedure to reconfigure this data
source.

• Verify that the JDBC URL specified for the Compass Travel pontbase files is
correct.

Enabling debugging options
The ColdFusion MX Administrator provides a variety of debugging settings that let you
enable debugging information on a server-wide basis. If you are working on a
development system, you can have these options turned on all the time. However, if you
are working on a production system, you most likely will not want to have these options
turned on, because the debugging information can appear on the bottom of an
application page or in a dockable tree in your browser.

The following figure shows an example of how debugging information can appear when
appended to the bottom of a page in a browser:

The appended
debugging information

The application form
40 Chapter 4 Configuring Your Development Environment

The location of the debugging information or the type of debugging data shown varies,
depending on the options that you enable on the Debugging page in the ColdFusion
Administrator. In the following example, the debugging output includes general
information about the ColdFusion server, the execution time of the application, and
variable information.

If you are using a development server to build the sample application in Part II of this
book, you can enable some of these settings to help debug any unexpected problems.

Use the following steps to enable debugging options in the ColdFusion Administrator.

To enable debugging options:

1 In the ColdFusion Administrator, select Debugging and Logging > Debugging.
A list of debugging options appear on the Debugging Settings page.

2 Select the Enable Debugging check box.

When you select this option, the debugging service is enabled for all options already
selected on the page.

3 On Debugging Settings page, view the description of each option that is enabled. If
you do not want to append debugging information for a specific option, clear the
check box.
Configuring database connection and debugging options 41

For the purpose of the tutorial in Part II of this book, enable the following debugging
options:

4 Click Submit Changes when you are done.

Sending debugging information to remote clients

If you are using a remote client to perform the tutorial in Part II of this book, you must
specify your IP address to receive debugging information. If you are working on a local
client (the computer where ColdFusion is installed), this procedure is not necessary.

To recieve debugging information when using a remote client:

1 In the ColdFusion Administrator, select Debugging and Logging > Debugging IP
Addresses.
The Debugging IP Address page appears.

2 In the IP Address text box, enter the IP address of your remote client.

3 Click Add.

Option Description

Database Activity Identifies database activity related to SQL query events.

Exception Information Identifies ColdFusion exceptions raised in the debugging
output.

Tracing Information Lets you trace event information reported in the debugging
output.

 Form, URL and Session
Variables

Displays variable information in the debugging output.
42 Chapter 4 Configuring Your Development Environment

Macromedia development environment tools
Macromedia Dreamweaver MX is the preferred development environment for building
ColdFusion MX applications. It combines the best code editing features of ColdFusion
Studio with the visual design features of Dreamweaver.

Dreamweaver MX supports the latest ColdFusion MX features and tags. It also includes
Macromedia HomeSite+, which combines all the features of ColdFusion Studio and
HomeSite 5, along with support for the latest ColdFusion MX tags.

With Dreamweaver MX or HomeSite+, you can author and test your application code
from a local or remote client. Both of these tools let you save your code directly to the
server computer where ColdFusion is installed. The following sections provide an
overview of Dreamweaver MX, and information on how to configure Dreamweaver MX
and HomeSite+ for ColdFusion development.

 Dreamweaver
MX window
Macromedia development environment tools 43

The Dreamweaver MX environment
As a ColdFusion developer, you can build ColdFusion MX applications by writing the
code manually or generating the code by using one of the code-generating tools provided
with Dreamweaver MX.

Features for ColdFusion developers

Dreamweaver MX provides a wide variety of code editing features for ColdFusion
developers, including the following:
• Rich tag editors for quickly setting attributes and values for every CFML tag.
• Code hints for writing CFML tag attributes.
• Code validator for validating code readiness against other ColdFusion versions.
• Tag chooser with integrated reference material for inserting ColdFusion tags.
• Snippets panel for reusing code.
• Integrated debugging display for quickly pinpointing problem areas in the code.
• Remote ColdFusion server connection for browsing remote data sources and files.

If you plan to use Dreamweaver MX or HomeSite+ to build the sample ColdFusion
application in Part II of this book, see the following sections for information about
configuring these tools for ColdFusion development.
44 Chapter 4 Configuring Your Development Environment

Configuring Dreamweaver MX for ColdFusion development
Before you use Dreamweaver MX to create the sample application in Part II of this book,
you must configure Dreamweaver to recognize the tutorial files and data sources.

To configure Dreamweaver MX to create the sample application:

1 Create a site that contains the tutorial files.

For information about how to create a site in Dreamweaver MX, see the
Dreamweaver MX online Help or Using Dreamweaver MX.

2 Specify ColdFusion as the application server document type.

For information about how to specify ColdFusion as the server document type, see
the Dreamweaver MX online Help or Using Dreamweaver MX.

3 Specify ColdFusion MX as the site application server.

For information about how to specify ColdFusion as your application server, see the
Dreamweaver MX online Help or Using Dreamweaver MX.

Tip: If you are a new Dreamweaver MX user, you can perform the Dreamweaver MX
tutorial before using Dreamweaver MX to build the sample application. The tutorial in this
book does not describe how to use Dreamweaver. The purpose of this tutorial is to teach
you how to build ColdFusion applications using ColdFusion Markup Language (CFML).

Configuring HomeSite+ for ColdFusion development
Before you use Macromedia HomeSite+ to create the sample application in Part II of this
book, you must configure HomeSite+ to recognize the tutorial files and data sources.

To use HomeSite+ to create the sample application:

1 Establish a secure connection to the ColdFusion Server environment where the
tutorial files are installed. Establishing a connection to the ColdFusion Server is a
prerequisite for accessing the ColdFusion data sources.

For information, see the online Help or product documentation for HomeSite+.

2 Enable internal browsing to view and process the ColdFusion application files.

For information, see the online Help or product documentation for HomeSite+.

3 Determine how you want to work with the tutorial files. You can view and access the
tutorial files using the Resource Area in the HomeSite + window. You can also set up
a project to manage the files more efficiently.

For more information, see the online Help or the product documentation for
HomeSite+.

Note: The tutorial provided in this book does not describe how to use HomeSite +. The
purpose of this tutorial is to teach you how to build ColdFusion applications using
ColdFusion Markup Language (CFML). For more information about HomeSite +, see the
product documentation or online Help.
Macromedia development environment tools 45

46 Chapter 4 Configuring Your Development Environment

PART II

Building a ColdFusion

Application
Part II provides a tutorial that steps you through building a sample
ColdFusion application. It consists of six lessons:

Preparing to Build the Sample Application ...49

Writing Your First ColdFusion Application...59

Creating a Main Application Page... 81

Validating Data to Enforce Business Rules ...99

Implementing the Browsing and Maintenance Database Functions119

Adding and Updating SQL Data.. 129

LESSON 1

Preparing to Build the Sample

Application
In this tutorial, you will build a simple ColdFusion web application for a fictitious travel
company called Compass Travel. Compass Travel markets a wide range of adventure trips
to the public through its website. Trip coordinators at Compass Travel are responsible for
maintaining the trip information made available to the public. You will build the sample
tutorial application to assist the trip coordinators in maintaining trip information in the
Compass Travel database.

ColdFusion development is the emphasis of the tutorial, therefore, you will not need to
design or build the Compass Travel database. It is important, however, for you to be
familiar with the layout of the database. Additionally, you must understand the
functional requirements that will help in determining the application design. This lesson
provides an overview of these application design steps, while the remainder of this book
guides you through the lessons on constructing the sample application.
49

Application development steps
Most software applications perform three major functions:
• A user interface to capture data.
• Logic to validate the captured data.
• A database to store the validated data.

The process steps to develop these major functions varies from project to project. In this
tutorial you will review or participate in the following application development steps to
build the Compass Travel Trips Maintenance application:

An overview of each of these application development steps is explored in greater detail in
the following sections.

Step Description

1 Determine the application functional requirements.

2 Determine the data requirements by identifying the information required
for the Trip Maintenance application.

3 Design the database for your application by exploring the database
tables that will store the trip information.

4 Develop the ColdFusion application pages.
50 Lesson 1 Preparing to Build the Sample Application

Determining the application functional requirements
Before you can build the sample application, you must understand the functional
requirements underpinning its design. The design of the sample application centers
around the daily tasks performed by Compass Travel’s trip coordinators. These tasks are
listed in the following table:

You can derive several functional requirements for the new application from the
preceding table. For example, the sample application must provide the following
functions:

In the lessons that follow, you will build ColdFusion pages to address each of these
functional requirements. Central to every requirement is the notion of a trip. Before you
can build code to address any of these requirements, you must understand which
attributes of a trip are important to Compass Travel. For this you must determine the
data requirements for the application. Understanding the data requirements is essential to
building the proper database to hold the application data.

Trip coordinator task Description

Produce current trip
listing

To help Compass Travel agents take trip reservations over the
phone and in person, the trip coordinator maintains a list of
current trip offerings.

Provide trip information On an ad hoc basis, Compass Travel management asks the trip
coordinator to develop lists of trips that meet specific criteria.

Maintain trip information The trip coordinator is responsible for keeping all trip information
up to date. To do this, the coordinator needs to locate a trip to edit
it or delete it. Additionally, the coordinator must be able to add a
new trip.

Ensure the quality of trip
information

The trip coordinator is responsible for periodically browsing the
current trip offerings to ensure that all the information is accurate.
Additionally, when adding a new trip or editing an existing one,
the trip coordinator must ensure that the data adheres to the
Compass Travel business rules.

Functional requirement

1 The ability to generate trip listings

2 A trip query facility based on user supplied criteria

3 Trip browsing functionality

4 The ability to add a new trip

5 The ability to delete an existing trip

6 The ability to edit an existing trip

7 A mechanism to validate new or updated trips against Compass business rules
Determining the application functional requirements 51

Determining the data requirements
Prior to creating the application pages to capture trip information, you must determine
what type of data is required about each trip. For the example, in this tutorial, the
Compass Travel Trip Coordinator must maintain the following information about each
trip:
• Trip name
• Type of event (surfing, mountain climbing, kayaking, etc.)
• Trip description
• Trip location
• An indicator of whether a deposit is required
• Departure date
• Return date
• Total number of people who can attend the trip
• Price
• Base cost
• Assigned trip leader
• Trip photograph

By collecting the preceding information about each trip, the Compass Travel website can
market its trips online to the general public. Customers booking a trip need to know the
trip name, when the trip begins and ends, the price, and a description. Additionally, the
trip coordinator must identify the file name for a photograph of each trip. The Compass
Travel website displays the photograph to further entice prospective customers into
booking the trip. Finally, Compass Travel considers it important to store the base cost for
each trip to help determine trip profitability. The cost must be captured, but it is for
Compass Travel internal use only. Cost is not shown on the public website.
52 Lesson 1 Preparing to Build the Sample Application

Designing the database for your application
After you identify the information to collect, you must consider where to store the data.
Prior to creating the data collection form and instructing ColdFusion where to store the
form data, you must have a database ready to accept the data.

If you had to create the Compass Travel database, you would create a table named Trips
to store the information that you plan to collect about each trip. The table would look
something like this:

Recognizing the data types

Each field in the Trips table has a data type attribute that describes the type of data that
can be stored in the column. For instance, the tripName column can contain text data
while the price column can only contain numeric data. It is important to know what type
of data is valid for each column so that your data collection forms can validate against
incorrect values entered by the user.

Looking closer, you might wonder why the eventType column is a number and not a text
data type column. Recall that data requirements analysis identified the need for a type of
event (surfing, mountain climbing, kayaking, and so on). The purpose of this column is
to classify trips into various categories based on the trip activity. It is essential that the
application classifies the trips consistently. Therefore, it is important to offer a list of
event types for the user to select, rather than to accept free text input.

To present a list of event types for user selection, the event types are stored in a separate
table, the Eventtypes table. This table is already populated and contains the following
rows:
Designing the database for your application 53

Establishing a relationship between the two tables

When the user selects an event type from the list obtained from reading the eventtypes
table, the correct event type must be saved to the trips table with all the other trip related
data. The application could store the eventType (for example, mountain climbing) itself
into the eventType column in the Trips table. But if the name Mountain Climbing were
later shortened to Climbing in the eventtypes table, new mountain climbing trips would
be classified differently than ones saved before the change. For this reason and to save
space in the database, the key to the eventtypes row (eventTypeID) is stored in the trips
table instead.

The two tables are said to have a relationship. This relationship works by matching data
in key fields. In this case, the matching fields consist of a primary key (eventTypeID)
from the Eventtypes table, which provides a unique identifier for each record, and a
foreign key (eventType) in the Trips table. The foreign key contains the same value as the
primary key, pointing to a unique event type. The following figure shows this
relationship:
54 Lesson 1 Preparing to Build the Sample Application

Developing the sample application
Given the application functional requirements and the database provided, you are ready
to use ColdFusion to develop the Trips Maintenance application. The remaining lessons
in the tutorial will step you through the process of constructing this application. When
you are done, the main page for the Trip Maintenance application will appear as follows:

The main application page is where users will come to view information about trips and
to navigate to other ColdFusion pages to add, edit or search for new trips.

The following lessons, explain how to do these tasks:
• Develop a trip search facility (Lesson 2).
• Build the main application page (Lesson 3).
• Implement browsing and trip maintenance functions (Lesson 4).
• Write code to enforce Compass Travel business rules (Lesson 5).
• Develop the trip add and update pages (Lesson 6).

How to proceed
Each lesson in the tutorial is designed to let you proceed at your own pace. At any time,
you can stop and later return to that place in a lesson so that you can complete all the
sections in the lesson.
Developing the sample application 55

Each lesson guides you through a scenario to enhance the Compass Travel Trip
Maintenance application. Sections within a lesson present basic programming concepts
that you need to understand before completing the section exercise(s).

Depending on your programming experience, you can read the entire lesson then
proceed to the hands-on exercises, or you can skip some information in the lesson and
proceed directly to the exercises.

Working directories

The following table describes the working directories for this tutorial:

Locating the working directories

You can locate the working directories for this tutorial under your web root directory. For
example, the directory path on your computer might be:

(on Windows NT) <mywebserverdocroot>\cfdocs\getting_started
(on UNIX) <mywebserverdocroot>/cfdocs/getting_started

You can view ColdFusion application pages on your local computer by opening a web
browser and entering one of the following URL:

For more information about the tutorial file structure and the location of the
getting_started subdirectories, see “Verifying the tutorial file structure” on page 36.

Directory Description

my_app You will save all your source code in this directory.

solutions You can find solutions to all the exercises in this directory.

db You will use this directory as the working directory for the Compass
Travel database.

Note: As discussed earlier in Chapter 4, you should verify that the
Compass Travel database file residing in the db directory is the original
file supplied. This file should have the same date as the file in the
new_user_db directory. If date on the file in the db directory is different,
replace the file in db directory with a copy of the Compass Travel
database file that is located in the new_user_db directory.

photos You will use this directory to access existing trip photographs.

images You will use this directory to access application image files.

Configuration URL

For local third-party
web server
configuration

http://localhost/cfdocs/getting_started/my_app/<pagename>.cfm

For standalone
ColdFusion web
server configuration

http://localhost:8100/cfdocs/getting_started/my_app/
<pagename>.cfm
56 Lesson 1 Preparing to Build the Sample Application

Requirements

To use this tutorial, you must have the following components installed:
• ColdFusion Server For information on how to install ColdFusion Server, see

Installing ColdFusion MX.
• Database Management System A database management system can be installed

on the same computer as the ColdFusion Server or on a separate computer. For the
purpose of this tutorial, a Microsoft Access database file for MS Windows users and a
PointBase database file for UNIX users has been provided. For information about
how to configure the Compass Travel datasource, see “Configuring Your
Development Environment” on page 35. For additional information about
configuring a data source, see Installing ColdFusion MX.

• Web browser You can use Internet Explorer (4.0 or later) or Netscape Navigator
(6.0 or later).

• Text editor or IDE (Interactive Development Environment) Macromedia
recommends that you use Dreamweaver MX. However, you can use HomeSite+,
ColdFusion Studio, any text editor, or IDE. In the exercises in this tutorial, the term
editor means Dreamweaver MX, HomeSite+, ColdFusion Studio, or any text editor
or IDE of your choice.

Note: The default file extension used for ColdFusion application pages is.cfm.
Developing the sample application 57

58 Lesson 1 Preparing to Build the Sample Application

LESSON 2

Writing Your First ColdFusion

Application
In this lesson, you begin the construction of a ColdFusion web application for the
fictitious company, Compass Travel. The exercises in this lesson guide you through the
steps of creating queries and forms to search for and display trip offering information
from the Compass Travel relational database.

This lesson explains how to do the following tasks:
• Construct a query to retrieve information from a database.
• Develop a search form to accept user criteria.
• Use dynamic SQL to build a flexible search query.
• Develop a results form to display the result of the search.

ColdFusion tags and functions introduced in this lesson

The following table identifies the ColdFusion tags and functions that you use in this
lesson to build your first ColdFusion application:

Element Type Description

PreserveSingleQuotes Function Enables you to use single quotation marks in
variables used in SQL statements.

cfoutput Tag Instructs the server to show the results of variables,
functions, or text that is specified between the
cfoutput start and end tags.

cfquery Tag Submits SQL statements to a JDBC data source.

cfif Tag Creates conditional statements.

cfset Tag Defines a ColdFusion variable. If the variable
already exists, cfset resets it to the specified
value.
59

Creating your first ColdFusion application
As you recall from Lesson 3, two of the requirements for the Trip Maintenance
application are the ability to generate trip listings and a trip query facility. You will create
a search interface that meets both of these requirements in this lesson.

The following list identifies the components that you will create in this lesson:
• Dynamic Trip List page The purpose of the Trip List page is to present an

up-to-date lists of trips on the Compass Travel website.

• Trip Search form The purpose of the Trip search form is to enable Compass Travel
employees to search and view brief details about existing trips on their website.
60 Lesson 2 Writing Your First ColdFusion Application

• Trip Search Results page The purpose of the Trip Search Results page is to
display the results of a trip search.

The primary users of these components are the Compass Travel coordinators and agents,
not the general public.

Application development steps
You will review or participate in the following application construction steps:

Steps Description

1 Create a dynamic web page that displays a list of trips.

2 Design the constraints for the search interface.

3 Develop ColdFusion pages to capture user search criteria and display the
results.
Creating your first ColdFusion application 61

Using a web page to list trips
To help Compass Travel agents take trip reservations by telephone and in person, the trip
coordinator maintains a list of current trip offerings. Years ago, the coordinator would
type the list and fax it to the various Compass Travel offices in an effort to keep everyone
informed. When Compass Travel built an intranet accessible by all offices, the trip
coordinator added the following HTML web page to the site:

Each time the Trip List HTML page is rendered in a browser, it displays the same web
page. Since the page always shows an identical trip list, it is considered a static web page.
You should only use static web pages when you are creating a page that is not likely to
change often.

Converting to a dynamic web page
Using the static web page approach, the Trip Coordinator needs to modify all the web
pages that reference trip lists when trips are added, deleted, or trip names are changed.
This manual process of updating each web page can lead to inaccurate or untimely
information. Luckily, since Compass Travel has built a database that contains a list of
trips, you can build a more accurate and timely solution for the trip coordinator. To
accomplish this, you must understand how to issue a SQL SELECT statement to retrieve
the data from the Trips table in the Compass Travel database.

Understanding basic SQL SELECT statements

The SQL SELECT statement retrieves columns of data from a database. The tabular
result is stored in a result table (called the record set).

You use the following SELECT statement to retrieve information from a table:

SELECT column_name(s) FROM table_name
62 Lesson 2 Writing Your First ColdFusion Application

Consider a table named Clients to hold information about people with the following
rows:

To select the columns named LastName and FirstName, use the following SELECT
statement:

SELECT LastName, FirstName FROM Clients

The results of this SQL statement contains the following data:

Using the SQL WHERE clause to limit the rows returned

To conditionally select data from a table, you can add a WHERE clause to the SELECT
statement resulting in the following syntax:

SELECT column_name FROM table_name WHERE column condition value

With the WHERE clause, you can use any of the following operators:

LastName FirstName Address City

Jones Tom 12 State St Boston

Adams Anita 521 Beacon St Boston

Green Peter 1 Broadway New York

LastName FirstName

Jones Tom

Adams Anita

Green Peter

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

AND Joins one or more conditions

OR Joins one or more conditions

LIKE Specifies a search for a pattern in a column. You can use a "%" sign to
define wildcards (missing letters in the pattern) before and after the
pattern.
Using a web page to list trips 63

For example, to select the columns named Last Name and First Name for Clients whose
City is Boston, use the following SELECT statement:

SELECT LastName, FirstName FROM Clients Where City = 'Boston'

The results of the preceding SQL statement contains the following data:

You can compose a WHERE clause with one or more conditions; these are called
subclauses. You join subclauses using the operators AND and OR.The AND operator
displays a row if ALL conditions listed are true. The OR operator displays a row if ANY
of the conditions listed are true. An example of a WHERE clause with multiple
subclauses follows:

SELECT LastName FROM Clients Where City = 'Boston' AND FirstName = 'Anita'

The results of the preceding SQL statement contains the following data:

Note: The preceding SQL SELECT examples use single quotation marks around the
value. SQL uses single quotation marks around text values. Most database systems will also
accept double quotation marks. Do not enclose numeric values in quotation marks.

Sorting the results

You use the ORDER BY clause to sort the result rows. The following SQL statement
returns an alphabetic list of people sorted by last name then first name from the Clients
table:

SELECT * FROM Clients Order By LastName, FirstName

The default is to return the results in ascending order (top to bottom). If you include the
DESC keyword in the ORDER BY clause, the rows are returned in descending order
(bottom to top).

The following statement returns a reverse alphabetic list of the Clients table:

SELECT * FROM Clients Order By LastName, FirstName DESC

Note: The SQL SELECT statement is quite powerful. There are several other options for
retrieving data from a SQL database using the SELECT statement, which are not described
in this book. For more information, consult a SQL reference.

Using SQL with cfquery to dynamically retrieve information
Relational database management systems process SQL instructions sent to them from
various applications. ColdFusion sends SQL statements to database managers to
manipulate data. ColdFusion needs a way to know which database manager to send a
specific SQL string for evaluation. In CFML, the cfquery tag serves this purpose. You
will use the SQL SELECT statement and the cfquery tag to create a dynamic version of

LastName FirstName

Jones Tom

Adams Anita

LastName

Adams
64 Lesson 2 Writing Your First ColdFusion Application

the Trip List page presented earlier in this lesson. In this example, you use cfquery to
return all the trip names found in the tripName column within the Compass Travel Trips
table. To use the SQL SELECT statement to dynamically retrieve this information, you
must execute the SQL SELECT statement between the cfquery start and end tags as
follows:

<cfquery name="TripResult" datasource= "CompassTravel">
SELECT tripName FROM trips

</cfquery>

Displaying the query result using cfoutput

In Chapter 2, you learned that the ColdFusion cfoutput tag is an easy mechanism to
display literal text and the contents of variables. Additionally, the cfoutput tag
significantly simplifies displaying the results of queries. When used to display the results
from a query, the cfoutput tag automatically loops through the record set for you. You
simply specify the name of the query in the QUERY attribute of the cfoutput tag:

<cfoutput query="TripResult">

All the code between the cfoutput start and end tags is the output code block. The
output code block executes repeatedly, once for each row in the record set. However, if
the query returns no rows, ColdFusion skips the code contained in the output code
block.

<cfoutput query = "xxx">
...output code block...

</cfoutput>

Displaying the column contents from the SQL statement

In CFML you surround variables with pound signs (#) to display their contents using the
cfoutput tag. You also use this approach with column names specified in the SELECT
statement of a cfquery. For instance, when you want to display the trip names from the
SQL query, you would simply use #tripName# within the output code block.

<cfoutput query="TripResult">
#tripname#

</cfoutput>

For additional information about using SQL with cfquery and cfoutput, see
Developing ColdFusion MX Applications with CFML.
Using a web page to list trips 65

Creating a dynamic web page
In the following exercises you will build a dynamic Trip Listing web page that is always
current. The first exercise guides you through constructing a query to retrieve
information from the database. In the second exercise, you will enhance the query to sort
the query results and to display other pertinent trip information.

For your convenience, the following figure shows the Compass Travel Trips table. You
can refer to this table to verify the names of the columns you use in the queries in the
exercises.

Exercise: building a query using SQL, cfquery, and cfoutput

Follow these steps to build a query that lists the current trips from the Compass Travel
database.

To build the query:

1 Open an editor and create a new ColdFusion page (.cfm).

2 At the top of the file, enter the following code to dynamically retrieve the names of
the current trips listed in the Compass Travel database:
<cfquery name="TripResult" datasource="compasstravel">

SELECT tripName FROM trips
</cfquery>
<html>

<head>
<title>Trip Listing</TITLE>

</head>
<body>

<h1>Trip List</h1>
<cfoutput query="TripResult">#tripName#
</cfoutput>

</body>
</html>

3 Save the file as triplisting.cfm in the my_app directory.

4 View the triplisting.cfm page in a browser. The page lists all the trip names retrieved
from Compass Travel database.
66 Lesson 2 Writing Your First ColdFusion Application

Reviewing the code

The following table describes the code used to build the query:

Exercise: enhancing the query

In this exercise you will improve the Trip List page to make it easier for the Compass
Travel agents to locate trips. You must make the following improvements:
• Sort the trip names in alphabetic order.
• Display the departure date, return date, and price for each trip.
• Develop a Budget Trip List report that identifies trips that are priced $1500 or less.

To enhance the trip listing query to meet these new requirements, you will modify the
query you created in the previous exercise.

Follow these steps to enhance the query to meet the new requirements. Display the
triplisting.cfm page in the browser after each step to ensure the corresponding
requirement was met.

To enhance the query results:

1 To sort the trip names in alphabetical order in the triplisting.cfm page, modify the
SQL SELECT statement within the cfquery tags as follows:
SELECT tripName FROM trips ORDER BY tripName

2 To display the departure, return date, and price for each trip, modify the same SQL
statement.

a Modify the SQL SELECT statement, as follows:
SELECT tripName, departureDate, returnDate, price
FROM trips
ORDER BY tripName

b Change the output block (the code immediately preceding the </cfoutput> tag)
from just #tripName# to include all three selected fields, as follows:
#tripName# departs: #departureDate# returns: #returnDate# price:
#price#

Code Explanation

<cfquery name="TripResult"
datasource="CompassTravel">

ColdFusion query named "TripResult". Submits any SQL
statement between the cfquery start and end tags to the
data source specified in the datasource attribute.

SELECT tripName FROM trips SQL SELECT statement to retrieve all tripName(s) from
the trips table.

<cfoutput query="TripResult">
#tripName#
</cfoutput>

Output code block. Displays the value of the column
tripName for each row in the result set from the
"TripResult" query.
Using a web page to list trips 67

3 Create the Budget Trip List report by doing the following:

a Modify the SQL SELECT statement, as follows:
SELECT tripName, departureDate, returnDate, price
FROM trips
WHERE price <= 1500
ORDER BY tripName

b Change the heading tag from <h1>Trip List</h1> to <h1>Budget Trip
List</h1>.

4 View the triplisting.cfm in a browser and verify that all the new requirements were
met. The revised TripListing.cfm page looks like this:

Note that the dates and prices in the preceding listing are not formatted. In Lesson 3
you will enhance the look of this page.
68 Lesson 2 Writing Your First ColdFusion Application

Developing a search capability
The dynamic listings developed in the previous exercise meet many of Compass Travel’s
requirements for locating trips. However, what if the number of trips were in the
thousands or tens of thousands? Locating the right trip for a customer might be difficult
and certainly time consuming. Moreover, it is very hard, if not impossible, to anticipate
all the ways that a user might want to search for trips.

A better solution is to provide an interface for the user to specify the search criteria. The
results of the user’s criteria selection are then posted to a search results page. The logic
contained within the search results page builds the SQL SELECT statement contained in
a cfquery tag using ColdFusion string manipulation. Finally, the action page displays
the result using the cfoutput tag. This approach of building and executing SQL
statements on the fly is called dynamic SQL.

Dynamic SQL

Dynamic SQL is a term used to refer to SQL code your program generates using
variables before the SQL is executed. You can use dynamic SQL to accomplish tasks such
as adding WHERE clauses to a search based on the fields that the user filled out on a
search criteria page.

Designing the search criteria page
When designing the search criteria page, it is a good idea to develop a list of possible
queries the user might issue when searching for the records. Since most Compass Travel
customers are primarily concerned with trip locations, departure dates, and price, the
following is a list of the types of queries the agents are likely to issue at Compass Travel:
• List the trips located in Hawaii.
• Identify the trips with a price greater than $3,000.
• Show the trips departing after 11/11/2002 that are priced less than $2,000.

There are a number of considerations to take into account, when you design a search
page to capture the user’s search criteria. Two of the most important considerations are as
follows:
• For which database columns will the user be allowed to specify a search condition?
• Should the user be allowed to identify which database columns to include in the

record set?

In this lesson, the Compass Travel trip coordinator will search the trips based on
tripLocation, departureDate, and price. These queryable columns, therefore, will be the
only ones contained in the WHERE clause of the generated SQL Statement. Further, the
coordinator will have no control over which columns are returned in the record set. The
query will always return the same columns to identify a trip:
• tripName
• tripLocation
• departureDate
• returnDate
Developing a search capability 69

• price
• tripID

In later exercises, you will reference these columns when you build the SQL SELECT
statement for the cfquery in the search action page.

Understanding search query operators

Now that you decided on the queryable columns (tripLocation, departureDate, and
price), you can build a simple form that allows the user to enter values for each of these
fields. If the user enters a value (for example, Boston) for the tripLocation field and leaves
the other two fields blank, the search results page constructs the following SQL
statement:

SELECT tripName, tripLocation, departureDate,
returnDate, price, tripID

FROM trips
WHERE tripLocation = 'Boston'

But, what if the user wants a list of all the trips where the trip location begins with a "B"?
SQL is well-suited for this type of query. When designing the Search Criteria page, you
must decide which operators to support for each of the queryable columns. The
operators that you use depends on the data type of the SQL column.

For example, price is a numeric data type. The user can specify any of the following:
• price is 5000
• price less than 600
• price greater than 1500

Unlike trip location, it is not semantically correct to consider whether a price begins with
"B". Typical SQL string operators are equals, starts with, contains, and ends with.

While many more operators are permissible, for simplification, you can use the following
the operators for the Compass Travel queryable columns:

Queryable column Query operators

tripLocation is, begins with

departureDate is, before, after

price is, greater than, less than
70 Lesson 2 Writing Your First ColdFusion Application

Using SQL operators to create a search criteria page

A simple design for a search criteria page presents an operator list and data entry field for
each of the queryable columns. Following this pattern, a page to collect the Compass
Travel Trip search criteria looks like this:

Since all the code used to produce the search criteria page is HTML, you are not
requested to build this page. You will, however, use this page (tripsearch.cfm) later in this
lesson to test the search action page. The source code for the Trip Search form
(tripsearch.cfm) is as follows:

<html>
<head>
<title>Trip Maintenance - Search Form</title>
</head>
<body>

<!--- Search form --->
<form action="tripsearchresult.cfm" method="post">
<table>

<!--- Field: tripLocation --->
<tr>

<td>Trip Location
</td>
<td>

<select name="tripLocationOperator">
<option value="EQUALS">is
<option value="BEGINS_WITH">begins with

</select>
</td>
<td>

<input type="text" name="tripLocationValue">
</td>

</tr>
<!--- Field: departureDate --->
<tr>

<td>Departure Date
</td>
Developing a search capability 71

<td>
<select name="departureOperator">

<option value="EQUALS">is
<option value="BEFORE">before
<option value="AFTER">after

</select>
</td>
<td>

<input type="text" name="departureValue">
</td>

</tr>
<!--- Field: price --->
<tr>

<td>Price
</td>
<td>

<select name="priceOperator">
<option value="EQUAL">is
<option value="GREATER">greater than
<option value="SMALLER">smaller than

</select>
</td>
<td>

<input type="text" name="priceValue">
</td>

</tr>
</table>
<p>
<input type="submit" value="Search">
</form>
</body>
</html>

Reviewing the code

The following table describes the search criteria code and its function:

Code Explanation

<form action="tripsearchresult.cfm" method="post"> Identifies tripsearchresult.cfm as the
search action page. Results of user
entry are passed to the search action
page.

<select name="tripLocationOperator">
<option value="EQUALS">is
<option value="BEGINS_WITH">begins with
</select>

Builds a drop-down list offering the
query operators for tripLocation.
There must one operator list box for
each queryable column.

<input type="text" name="tripLocationValue"> Input text control to capture value to
test. There is one text control for
each queryable column.
72 Lesson 2 Writing Your First ColdFusion Application

Building the Search Results page
Based on the queryable columns identified earlier, the SQL query to display the search
results would look like this:

SELECT tripName, tripLocation, departureDate, returnDate, price, tripID
FROM trips

The purpose of the Trip Search form is to supply the data needed to build the WHERE
clause to finish this SQL SELECT statement and constrain the query according to the
user’s input.

When the user enters the search criteria on the Trip Search form and clicks the Search
button, the form fields are then posted to the Trip Search Results page. The posted field
values compose the WHERE clause in the SQL SELECT statement. The following
example lists the WHERE clauses that can be generated depending on the criteria set on
the search page:

WHERE tripLocation = 'China'
WHERE tripLocation Like 'C%'
WHERE tripLocation = 'China'

AND departureDate > 1/1/2001
AND price < 1500

In the previous example, the SQL AND operator joins the search condition clauses. To
simplify the trip search example, you will use the SQL AND operator to combine all the
search condition clauses. A more sophisticated search criteria page might present the user
a choice of using AND or OR to connect one search criterion with the others.

The search action page uses a SQL SELECT statement to display an HTML table with
the results of the user query using the cfoutput block.

Building the WHERE Clause with the cfif and cfset

The WHERE clause in a SQL SELECT is a string. You use the CFML cfset and cfif
tags to conditionally build the WHERE clause depending on values passed to the search
action page. The cfset statement creates a new variable or changes the value of an
existing variable. For example, to create a variable named color and initialize its value to
red you use the following statement:

<cfset color = "red">

The cfif tag instructs the program to branch to different parts of the code depending on
whether a test evaluates to True or False. For example, to have some code execute if the
color variable is equal to red, and other code execute if it is not, you use the following
pseudocode:

<cfif color EQ "red">
... statements for color red
<cfelse>
... statements for other than red
</cfif>
Developing a search capability 73

Building a SQL WHERE clause in code is largely an exercise in string concatenation.
The & operator combines two strings in ColdFusion. For example, the following code
snippet:

<cfset FirstName = "Dylan">
<cfset LastName = "Smith">
<cfset FullName = FirstName & " " & LastName>
<cfoutput>My name is #FullName#.</cfoutput>

results in the following text:

My name is Dylan Smith.

For each search criterion on the Trip Search form, the code within the Trip Search Results
page must do the following:
• Verify that the user entered data in the search criterion’s value field using the cfif

tag; for example <cfif Form.tripLocationValue GT "">
• If data was entered, construct a WHERE subclause by concatenating the following:

− the SQL keyword AND

− the corresponding SQL column name (in the Trip Search example, tripLocation)
for the search criterion.

− the SQL operator equivalent of the search query operator

− the test value entered by the user

The following code shows the creation of the WHERE subclause:

<cfif Form.tripLocationOperator EQ "EQUALS">
<cfset WhereClause = WhereClause & " AND tripLocation = '" &

form.tripLocationValue & "'" >
<cfelse>

<cfset WhereClause = WhereClause & " AND tripLocation like '" &
form.tripLocationValue & "%'" >

</cfif>

When you test for a string column within the WHERE clause of the SQL SELECT
statement, you must enclose the test value in quotation marks.

When you use a variable to construct a WHERE clause you must preserve the quotation
marks so that the database server does not return an error. To preserve the quotation
marks, you must use the ColdFusion PreserveSingleQuotes function.

Constructing the initial Trip Search Results page

The following code shows how to construct the tripLocation SQL WHERE subclause.
Specifically, it uses a dynamic SQL SELECT statement built from parameters from the
Trip Search page to display the search results.

As mentioned previously, the SQL SELECT statement uses quotation marks to surround
string variable values. Unfortunately, embedded quotation marks can cause problems
when posting data to a web server. Normally, ColdFusion adds an escape character to a
string that contains a quotation mark so that an error is not generated from the web
server. The PreserveSingleQuotes function prevents ColdFusion from automatically
escaping single quotation marks contained in the variable string passed to the function.
74 Lesson 2 Writing Your First ColdFusion Application

<!--- Create Where clause for query from data entered thru search form --->
<cfset WhereClause = " 0=0 ">

<!--- Build subclause for trip location --->
<cfif Form.tripLocationValue GT "">

<cfif Form.tripLocationOperator EQ "EQUALS">
<cfset WhereClause = WhereClause & " and tripLocation = '" &
form.tripLocationValue & "'" >

<cfelse>
<cfset WhereClause = WhereClause & " and tripLocation like '" &
form.tripLocationValue & "%'" >

</cfif>
</cfif>

<!--- Query returning search results --->
<cfquery name="TripResult" datasource="compasstravel">

SELECT tripName, tripLocation, departureDate, returnDate, price, tripID
FROM trips
WHERE #PreserveSingleQuotes(WhereClause)#

</cfquery>
<html>
<head>
<title>Trip Maintenance - Search Results</title>
</head>
<body>

<table border="0" cellpadding="3" cellspacing="0">

<tr bgcolor="Gray">
<td>Trip Name
</td>
<td>Location
</td>
<td>Departure Date
</td>
<td>Return Date
</td>
<td>Price
</td>

</tr>
<cfoutput query="TripResult">

<tr>
<td>#tripName#
</td>
<td>#tripLocation#
</td>
<td>#departureDate#
</td>
<td>#returnDate#
</td>
<td>#price#
</td>

</tr>
</cfoutput>

</table>
</body
Developing a search capability 75

Reviewing the code

The following table describes the code used to build the tripLocation WHERE
subclause:

Note that the preceding code only builds the tripLocation subclause. In the following
exercise you will add code for the other two queryable columns, departureDate and price.

Completing the Trip Search Results page
In the following exercises you will test and modify tripsearchresults.cfm. In the first
exercise, you will test the Trip Search Results page by entering criteria on the Trip Search
form and inspecting the results. In the second exercise, you will finish the code to
construct the complete WHERE clause for all three queryable columns from the Trip
Search form.

Exercise: testing the Trip Search Results page

Follow these steps to test the Trip Search Results page:

1 Copy the tripsearch.cfm and tripsearchresult.cfm files from the solutions directory to
the my_app directory.

2 View the tripsearch.cfm from the my_app directory in your browser and do the
following:

a In the Trip Location drop-down list box select the Begins With option, and enter
the value C in the text box.

b Click Search.

Code Explanation

<cfset WhereClause = " 0=0 "> The cfset tag initializes the WhereClause
variable to hold the WHERE clause to be
constructed. The initial value is set to "0=0",
so that the WHERE clause has at least one
subclause in case the user enters no search
criteria.

<cfif Form.tripLocationValue GT ""> The cfif tag tests to see if user entered
anything in the Value input box for
tripLocation criterion.

SELECT tripName, tripLocation,
departureDate, returnDate, price, tripID
FROM trips
WHERE #PreserveSingleQuotes(WhereClause)#

SQL query to execute.
PreserveSingleQuotes ColdFusion
function ensures that quotation marks will
passed to the database server as intended.
76 Lesson 2 Writing Your First ColdFusion Application

The Trip Results page displays several entries as follows:

c Notice in the Trip Results page that only one trip has a trip location of China.

d Click the Back button in your browser to return to the Trip Search page.

3 In the Trip Location drop-down list box of the Trip Search page, select the Is option,
enter the value China, then click Search.

The Trip Results page displays only one entry for the trip to China in the HTML
table.

4 Verify that the other criteria (departure date and price) are not taken into
consideration yet as follows:

a Click the Back button in the browser to return to the Trip Search page.

b In the Departure Date drop-down list box, select Before, enter 1/1/1900 as the
date, and select Smaller Than 0 for the price.

Obviously, either of these conditions would produce a results page with no rows.

c Click the Search button.

The Search Result page should be identical to Step 3 because the code to build
the WHERE clause in the Trip Results page does not include departure date and
price.

Exercise: enabling the departure and price criteria on the Trip Search form

In this exercise you will modify the Trip Search Results page to add the criteria needed for
the departure and price query.

To enable the departure and price criteria:

1 In an editor, open the tripsearchresult.cfm page in the my_app directory, then locate
the following comment line:

<!--- Query returning search results --->
Developing a search capability 77

2 To build the departureDate WHERE subclause, enter the code in the following
table immediately following the comment line.

3 To build the price WHERE subclause, enter the following code after the code you
entered in step 2.

<!--- Build subclause for price--->

<cfif Form.priceValue GT "">

<cfif Form.priceOperator EQ "EQUALS">

<cfset WhereClause = WhereClause & " and price = " & form.priceValue>

<cfelseif Form.priceOperator EQ "GREATER">

<cfset WhereClause = WhereClause & " and price > " & form.priceValue>

<cfelseif Form.priceOperator EQ "SMALLER">

<cfset WhereClause = WhereClause & " and price < " & form.priceValue>

</cfif>

</cfif>

For Enter this code

Windows users,
using the MS
Access database
file

<!--- Build subclause for departureDate --->

<cfif Form.departureValue GT "">

<cfif Form.departureOperator EQ "EQUALS">

<cfset WhereClause = WhereClause & " and departureDate = " &
Form.departureValue>

<cfelseif Form.departureOperator EQ "AFTER">

<cfset WhereClause = WhereClause & " and departureDate > " &
Form.departureValue>

<cfelseif Form.departureOperator EQ "BEFORE">

<cfset WhereClause = WhereClause & " and departureDate < " &
Form.departureValue>

</cfif>

</cfif>

UNIX users, using
the Pointbase
database file

<!--- Build subclause for departureDate --->

<cfif Form.departureValue GT "">

<cfif Form.departureOperator EQ "EQUALS">

<cfset WhereClause = WhereClause & " and departureDate = Date
'" & Form.departureValue & "'">

<cfelseif Form.departureOperator EQ "AFTER">

<cfset WhereClause = WhereClause & " and departureDate > Date
'" & Form.departureValue & "'">

<cfelseif Form.departureOperator EQ "BEFORE">

<cfset WhereClause = WhereClause & " and departureDate < Date
'" & Form.departureValue & "'">

</cfif>

</cfif>
78 Lesson 2 Writing Your First ColdFusion Application

4 Verify that the price and departureDate are now considered in the query, as in step
4 in the previous exercise:

a Open the tripsearch.cfm page in the my_app directory in your browser.

b In the Departure Date drop-down list box, select Before, enter 1/1/1900 as the
date, and select Smaller Than 0 for the price.

c Click the Search button.

Now, because the departure date is considered in the query, there are no rows
returned.

Note: If you planned to use many more fields as search criteria, the approach used to
add departure date and price criteria to the Trip Search form is not the most elegant
solution. A generic routine to handle WHERE clause string construction based on
specific data types could reduce the code and be a more extensible solution then the
one presented here. This more extensible approach is beyond the scope of this tutorial,
however.
Developing a search capability 79

Summary
This lesson described how to access a relational database using ColdFusion. You used the
SQL SELECT statement and the cfquery and cfoutput tags to display trip lists. You
built a search tool that dynamically builds a WHERE clause of the SQL SELECT
statement using cfif and cfset tags. To ensure that the SQL statement remains intact,
you used the PreserveSingleQuotes CFML function.

In the next lesson
In the next lesson, you will build the main navigation page for the Trip Maintenance
application. This page will display detail information about the currently selected trip.
Additionally, it will provide buttons to do trip maintenance and browsing through the
trips table. You will also link the trip search facility that you built in this lesson to the
main page that you will build in the next.
80 Lesson 2 Writing Your First ColdFusion Application

LESSON 3

Creating a Main Application Page
In this lesson you will enhance the Compass Travel Trip Maintenance application. The
exercises in this lesson guide you through the following steps:
• Transforming the search facility that you built in the previous lesson into a drill-down

facility for trip queries
• Creating a Trip Detail page to display complete details of a trip
• Implementing a link from Trip Detail page to the search facility
• Converting the Trip Detail page into the main application page by including buttons

for navigating to other pages and browsing trip records in the database

This lesson explains how to do the following tasks:
• Use URLEncodedFormat to safely link the Search Results page to the Trip Detail page.
• Use the DateFormat and DollarFormat functions to properly format date and dollar

variables.
• Use the MOD function and a query variable to properly alternate the back color of rows

in the Trip Search Results table.

ColdFusion tags and functions introduced in this lesson

The following table identifies the ColdFusion tags and functions that you use in this
lesson to enhance the sample ColdFusion application:

Element Type Brief description

IsDefined Function Evaluates a string value to determine whether it
represents an existing variable. Returns True if the
variable is found, False if not found.

DollarFormat Function Returns a number as a string formatted with two
decimal places, thousands separator, and dollar
sign. If the specified number is negative,
parentheses are used.

DateFormat Function Returns a formatted date/time value. If no mask is
specified, DateFormat returns the date value in the
dd-mmm-yy format. DateFormat supports dates
that have the U.S. date format.

URLEncodedFormat Function Converts a text string into a string that can safely be
used in a URL.
81

Enhancing the Trip Maintenance application
In this lesson you will enhance the Trip Maintenance application that you created in
Lesson 2. You will modify the application to include a main application page that lets
Compass Travel employees do these tasks:
• View additional details about a trip.
• Scan records in the Trips database table.
• Modify or search for records in the Trips database table.

The following list identifies the application components that you will create in this
lesson:
• Trip Detail Page. The Trip Detail page displays additional information about a trip

that was initially selected from the Trip Search Results page.
82 Lesson 3 Creating a Main Application Page

• Enhanced Trip Search Results page. The original purpose of the Trip Search
Results page in Lesson 2 was to display the results of a trip search. In this lesson, you
will enhance this page to provide a useful drill-down mechanism for accessing
additional information about trips that meet the search criteria.

• Main Application page In the beginning of this lesson, you will develop the Trip
Detail page (see the following figure). Later in this lesson, you will convert the Trip
Detail page into the main Trip Maintenance application page. The main application
page will include additional buttons for navigating to other ColdFusion pages and
browsing the trip database records.

Trip detail information that you
build initially

Maintenance buttons

Navigation buttons
Enhancing the Trip Maintenance application 83

The primary users of these components will be the Compass Travel coordinators and
agents, not the general public.

Showing additional trip details
By design, the Trip Search Results page displays a subset of the information about a trip.
To get additional information about any of the trips displayed, the user should be able to
click on any row to display the detailed trip data.

In the following exercise, you build a Trip Detail page to provide all the information
about a particular trip that is stored in the Compass Travel trips database. The following
figure shows an example of the Trip Detail page that you will build:

After you complete the Trip Maintenance application in this tutorial, you will use this
Trip Detail page in several ways:
• You can call the TripDetail page directly by typing in the address of the page with an

ID. For example, to view trip information for Rio Cahabon Rafting with tripID 24,
you open a browser and enter the following URL:
http://localhost/cfdocs/getting_started/my_app/tripdetail.cfm?ID=24

• You can navigate to the Trip Detail page by creating a hyperlink from the trip name
on the Trip Results page. This will offer the user drill-down capability when searching
for trips. You will link the Trip Results page and the Trip Detail page in one of the
exercises in this lesson.

• You can use browse buttons on the Trip Detail page to navigate the Trips table row by
row. You will implement this navigational feature in the next lesson.
84 Lesson 3 Creating a Main Application Page

Exercise: building a Trip Detail page

Follow these steps to build a Trip Detail page.

To build a Trip Detail page:

1 Open your editor and create a new ColdFusion page. Remove any lines if your editor
adds.

2 To create a query to select a single trip from the Trips table, enter the following code:
<cfquery name="TripQuery" dataSource="compasstravel" maxRows=1>
SELECT tripID, tripName, tripDescription, tripLocation, departureDate,
returnDate, price, tripLeader, photo, baseCost, numberPeople, depositRequired
FROM TRIPS
<cfif IsDefined("URL.ID")>
WHERE tripID = #URL.ID#
</cfif>
</cfquery>

3 To output the results from the query, append the following cfoutput code after the
code you added in step 2.
<cfoutput query="TripQuery">

</cfoutput>

4 To display the data fields on the Trip Detail page, place the following code above the
</cfoutput> tag you added in step 3. Alternatively, you can copy this HTML code
from the tripdetail.txt file in the solutions directory.
<table>

<tr>
<td valign="top">Trip Name:
</td>
<td>#tripName#
</td>

</tr>
<tr>

<td valign="top">Description:
</td>
<td>#tripDescription#
</td>

</tr>
<tr>

<td valign="top">Location:
</td>
<td>#tripLocation#
</td>

</tr>
<tr>

<td valign="top">Departure Date:
</td>
<td>#departureDate#
</td>

</tr>
<tr>

<td valign="top">Return Date:
</td>
Enhancing the Trip Maintenance application 85

<td>#returnDate#
</td>

</tr>
<tr>

<td valign="top">Price:
</td>
<td>#price#
</td>
</tr>

<tr>
<td valign="top">Base Cost:
</td>
<td>#baseCost#
</td>

</tr>
<tr>

<td valign="top">Trip Leader:
</td>
<td>#tripLeader#
</td>

</tr>
<tr>

<td valign="top">Number People:
</td>
<td>#numberPeople#
</td>

</tr>
<tr>

<td valign="top">Deposit Required:
</td>
<td>#depositRequired#
</td>

</tr>
<tr>

<td valign="top">Photo File:
</td>
<td>#photo#
</td>

</tr>
</table>

5 To provide a title that appears on the browser window, insert the following HTML
code before the <cfoutput query = "TripQuery"> line:
<html><head>

<title> Trip Maintenance - View Record </title>
</head>
<body>

6 Insert the ending body and html tags at the end of the page:
</body>
</html>

7 Save the file as tripdetail.cfm in the my_app directory.
86 Lesson 3 Creating a Main Application Page

8 The Rio Cahabon Rafting trip has an tripID of 24. To view the trip detail for the trip
in your browser enter one of the following URLs::

The following page shows the expected result:

Web server configuration URL

For stand-alone ColdFusion
web server configuration

http://localhost:8500/cfdocs/getting_started/my_app/
tripdetail.cfm

For local third-party web
server configuration

http://localhost/cfdocs/getting_started/my_app/
tripdetail.cfm
Enhancing the Trip Maintenance application 87

Reviewing the code

The following table describes the ColdFusion code used to build the Trip Detail page:

As you can see, you can build comprehensive database query applications using CFML
and dynamic SQL. To further test the new Trip Detail page that you created, you will
link it to the search facility that you built in Lesson 2. However, before you link the
search facility you built in Lesson 2, you need to understand a potential security risk
using dynamic SQL. The following section describes this risk and how to code around it.

Avoiding the potential security risk when using dynamic SQL
To reduce round trips between the client and the database server, many SQL database
servers permit the client to submit multiple SQL statements in a single request, separated
by a semicolon (;). For these database managements systems, the following SQL request
is valid:

DELETE from trips where tripLocation = 'China'; SELECT tripName from trips

This request may be an efficient way to list the trips that remain after the database
management system removes the China trip. Problems arise when the SQL statement is
built dynamically.

In the Trip Maintenance application, when the client program or user passes an ID in the
URL that calls the Trip Detail page, the page displays the relevant trip information. The
following code builds the correct WHERE clause supporting this behavior:

<cfif IsDefined("URL.ID")>
WHERE tripID = #URL.ID#

</cfif>

If a user called the Trip Detail page using the following statement:

http://localhost/cfdocs/getting_started/my_app/tripdetail.cfm?ID=24;DROP+trips

the SQL database management system executes the proper SQL SELECT statement,
then immediately erases the Trips table from the database.

Code Explanation

<cfquery name="TripQuery"
dataSource="CompassTravel" maxRows=1>

The cfquery tag includes a maxRows attribute.
This attribute limits the number of result rows
brought back from the database. In the Trip Detail
page, we want to only show a single row at a time,
therefore, maxRows is set to 1.

<cfif IsDefined("URL.ID")>
WHERE tripID = #URL.ID#

</cfif>

The URL.ID specifies a parameter that can be
contained within the URL that requests this page.
If the ID parameter is passed within the URL, it is
used in the SQL query to identify the tripID to
SELECT. You can use the CFML function
IsDefined to determine if a parameter is passed
within the URL. It can also be used to determine if
the user has entered data in form fields prior to the
form post action.
88 Lesson 3 Creating a Main Application Page

Protecting your application

To ensure that your application is protected from such an attack, you can exploit the fact
that the ID must be a numeric value. The CFML Val function returns the numeric value
at the beginning of a string expression. You can use the Val function as follows:

<cfif IsDefined("URL.ID")>
WHERE tripID = #Val(URL.ID)#

</cfif>

Now if non-numeric data is passed within the URL ID field, the Val statement returns 0,
and the trip with ID 0 displays (if one exists). If the user enters the previously cited URL
(http://localhost/cfdocs/getting_started/my_app/tripdetail.cfm?ID=24;DROP+trips),
the application ignores the non-numeric values and displays the trip information of trip
ID 24.

Warning: The exercises in this tutorial ignore the dynamic SQL risk from attack. You must
use the Val function in your applications to eliminate the risk.

Linking the Search Results page to the Trip Detail page
In the next exercise you will modify the Trip Search Results page to let the user view the
details of any trip. To do this, you will convert the trip name entries in the results page to
links, which will display the trip’s detailed information in the detail page.

Exercise: linking the Search Results page with the Trip Detail page

Use the following steps to link the Trip Search Results page (tripsearchresult.cfm) to the
Trip Detail page (tripdetail.cfm).

To create links between pages:

1 Open the tripsearchresult.cfm page from the my_app directory and replace the
#tripName# in the cfoutput block with the following code:

#tripName#

Note: The URLEncodedFormat is a ColdFusion function that returns a URL-encoded
string. Spaces are replaced with %20, and nonalphanumeric characters with equivalent
hexadecimal escape sequences. The function lets you pass arbitrary strings within a
URL, because ColdFusion automatically decodes URL parameters that are passed to
the page.

2 Save the file and view the tripsearch.cfm page from the my_app directory in your
browser.
Enhancing the Trip Maintenance application 89

3 In the Trip Location drop-down list box, select Begins With and type the value C in
the trip location text box then click Search.

The Trip Search Results page displays a hyperlink for each trip name listed, as the
following figure shows:

4 To view the Trip Detail page for a trip, click on the trip name.

You might notice that the dates and prices in both the Trip Detail and Trip Search
Results pages are unformatted. You will improve the appearance of the application in the
next exercise.

Enhancing the look of the search results and detail pages
The Trip Maintenance search now provides a useful drill-down mechanism for locating
trips. While this application is functionally sound, the appearance of the dates and dollar
amounts could be improved.

ColdFusion provides several functions to improve the application appearance. The
DateFormat and DollarFormat functions format dates and currency variables.
ColdFusion provides.

Another part of the application that could be improved is the Trip Search Results table.
In a large list, it is sometimes difficult to correctly read the contents of a row in the
middle of the table because it is sandwiched between two other rows. To avoid mistakes
in reading the table, it would be helpful to alternate the background color of each row in
the table.

The HTML table row <tr> tag has a bgcolor attribute to change the background color
for a given row. To highlight every other row, the background color could be changed
alternatively to yellow or white. To change the background color for each row, you must
determine whether the row is an odd or even row. Therefore, you must obtain the
sequence number of the current row and test if it is evenly divisible by 2.

As described in Chapter 2, ColdFusion offers a modulus function (MOD) that returns the
remainder (modulus) after a number is divided by a divisor; for example,10 MOD 3 is 1.

If the MOD function returns a value greater than 0, a cfif test of its result evaluates to
True. If the MOD function returns 0, the cfif check fails.
90 Lesson 3 Creating a Main Application Page

The following example uses the MOD function to alternate the background color of table
rows:

<cfoutput query="tripResult">
<cfif CurrentRow Mod 2>

<cfset BackColor="White">
<cfelse>

<cfset BackColor="Yellow">
</cfif>
<tr bgcolor= "#BackColor#">

Notice that the MOD function uses a variable called CurrentRow. Notice also that
CurrentRow is not defined anywhere in tripsearchresult.cfm. The CurrentRow variable
is one of a few variables that ColdFusion automatically exposes that provide information
about the query. These variables are often called query variables.

Query variables

In addition to using the cfquery tag to return data from a ColdFusion data source, you
also can use it to return information about a query. To do this, the cfquery tag creates a
query object, providing information in query variables as described in the following
table:

When a query variable is referenced within a cfoutput block, the qualifying query_name
is assumed to be the query identified in the QUERY attribute of the cfoutput tag and
does not need the qualifier query_name. That is why the CurrentRow variable is
unqualified in the previous modulus code example.

For more information about using the modulus function or query variables in
ColdFusion applications, see Developing ColdFusion MX Applications with CFML.

Exercise: formatting the display

In this exercise, you format the currency and date fields in the Trip Search Results page
and the Trip Detail page. Additionally, you modify the Trip Search Results page to
alternate the background color of the result table rows.

To format the table:

1 To format the Trip Detail page dollar and date fields, open the tripdetail.cfm in the
my_app directory in your editor and make the following changes:

Variable Name Description

query_name.recordCount The number of records returned by the query.

query_name.currentRow The current row of the query being processed by cfoutput.

query_name.columnList A comma-delimited list of the query columns.

Existing code Change to

#departureDate# #dateformat(departureDate, "mm/dd/yyyy")#

#returnDate# #dateformat(returnDate, "mm/dd/yyyy")#
Enhancing the Trip Maintenance application 91

2 To format the currency and date fields on the Trips Search Results page, open the
tripsearchresult.cfm in your editor and make the same changes for departureDate,
returnDate, and price as in step 1.

3 To alternate the background color of the rows of the search results table, delete the
table row tag <tr> that immediately follows the <cfoutput
query="TripResult">, and replace it with the following code:
<cfif CurrentRow Mod 2>

<cfset BackColor="White">
<cfelse>

<cfset BackColor="Yellow">
</cfif>
<TR bgcolor= #BackColor#>

4 Save the files then open your browser and navigate to the tripsearch.cfm page in the
my_app directory. Again, enter Begins With and C in the location search criteria, and
click Search.

The Trip Search Results page appears:

#price# #dollarformat(price)#

#baseCost# #dollarformat(baseCost)#

Existing code Change to
92 Lesson 3 Creating a Main Application Page

5 In the Trip Search Result page, click the link for Riding the Rockies.

The properly formatted Trip Detail page appears:

Creating the main application page from the Trip Detail page
To this point in the tutorial, you created a very useful drill-down query facility. Compass
Travel trip coordinators can produce lists required by management and easily locate and
display information about any trip. There are several requirements that were identified in
Lesson 1, however, that you have not addressed: the ability to browse through the Trips
table, and the ability to add, delete, and edit trip information.

The trip coordinator must be viewing the details of a specific trip to edit trip information
or delete a trip. The Trip Detail page provides this trip-specific detail information.
Therefore, you will use the Trip Detail page as the main Trip Maintenance application
page.

You will modify the Trip Detail page so that it can act as a main switchboard to
accomplish this additional functionality. The Trip Detail page shows information about a
single trip. You will convert the Trip Detail page into the main application page by
adding the following functionality:
• Navigation buttons to browse the database
• Database maintenance buttons to edit, delete, or add new trips
• An additional button to launch the search facility
Enhancing the Trip Maintenance application 93

Adding navigation buttons to browse database
The drill-down search function developed in the last exercise is very useful when the user
knows some search criteria to enter. Unfortunately, however, flipping back and forth
between the results page and the detail page to navigate through a record set can be
tedious. Moreover, on occasion the trip coordinator might want to browse the Trips
database just to check for anomalies or to become familiar with its contents. In these
cases, the user does not know the criteria to search for in advance.

For example, an anomaly may exist on any trip record, the trip coordinator would have
no idea what search criteria to specify on the search form to find these problem records.
To solve this problem, the browse function gives the coordinator the ability to navigate
sequentially through the trips table using the single record trips display. The following
figure shows the navigation buttons. The label under each button describes which row to
display relative to the currently displayed row:

Exercise: adding navigation buttons to the Trip Detail page

In this exercise, you use the HTML form and input tags to add the navigational buttons
to the Trips Detail page.

To add navigation:

1 Open the tripdetail.cfm in the my_app directory in your editor.

2 To implement the trip navigation buttons, insert the following code between the
</table> and</cfoutput> tags in the tripdetail.cfm file:
<form action="navigationaction.cfm" method="post">

<input type="hidden" name="RecordID" value="#tripID#">
<!--- graphical navigation buttons --->
<input type="image" name="btnFirst" src="images/first.gif">
<input type="image" name="btnPrev" src="images/prev.gif">
<input type="image" name="btnNext" src="images/next.gif">
<input type="image" name="btnLast" src="images/last.gif">

</form>

Note: Notice that the current trip record ID (tripID) is hidden within the form code.
This is desirable because the action page must have the current record ID in order to
build the query that navigates to the appropriate record in the trips database table.
94 Lesson 3 Creating a Main Application Page

3 Save the file and view the updated tripdetail.cfm page in a browser.

The Trip Search Results page appears:

4 Test the buttons by clicking any navigation button.

An error occurs because the navigation action page (navigationaction.cfm) does not
exist. The navigation action page processes the navigation button requests. You will
build the navigation action page in the next lesson.

Reviewing the code

The following table describes the navigation code in the Trip Detail page:

Code Explanation

<form action="navigationaction.cfm" method="post"> Form tag identifying
navigationaction.cfm to
handle record navigation.

<INPUT type="hidden" name="RecordID" value="#tripID#"> Hidden RecordID field with
the value of the current
tripID.

<input type="image" name="btnFirst" src="images/first.gif">
<input type="image" name="btnPrev" src="images/prev.gif">
<input type="image" name="btnNext" src="images/next.gif">
<input type="image" name="btnLast" src="images/last.gif">

Navigation buttons are image
type HTML input tags.
Enhancing the Trip Maintenance application 95

Adding database maintenance buttons
The search and sequential navigation capabilities are features for locating Compass Travel
trips. After the trip coordinator locates a trip, they must be able to modify or delete the
trip. Additionally, when viewing the detail for a trip, they must be allowed to add a new
trip or use the search facility. To enable trip coordinators to do this, you will add the
following buttons to the Trip Detail page:

As described earlier, it is important to pass the current record ID (tripID) to the action
page to build the proper SQL statement to process the navigation button requests. It is
also important to pass the current record ID to the Maintenance Action page. Therefore,
you will use an HTML input tag to hide the current recordID and post it to the
maintenanceaction.cfm page.

Exercise: add Maintenance Buttons to Trip Detail Page

Follow these steps to add the database maintenance buttons to the Trip Detail page.

To add maintenance buttons:

1 In your editor, open the tripdetail.cfm from my_app subdirectory.

2 Enter the following code immediately after the <cfoutput query="TripQuery">
tag in the tripdetail.cfm file:
<form action="maintenanceaction.cfm" method="post">

<input type="hidden" name="RecordID" value="#tripID#">
<input type="submit" name="btnAdd" value=" Add ">
<input type="submit" name="btnEdit" value=" Edit ">
<input type="submit" name="btnDelete" value="Delete">
<input type="submit" name="btnSearch" value="Search">

</form>

Note: The current trip record ID (tripID) is in a hidden field in the form code. This field
provides the action page with current record ID that it must have in order to build the
query to access the appropriate record in the Trips database table.
96 Lesson 3 Creating a Main Application Page

3 Save the file and view the updated tripdetail.cfm page in a browser (http://
localhost/CFDOCS/getting_started/my_app/tripdetail.cfm).

The page appears as follows:

4 Click Search or Delete to test the database maintenance buttons.

An error occurs because the Maintenance Action page does not exist. The
Maintenance Action page is required to process the maintenance button requests.
You will develop this page in the next lesson.
Enhancing the Trip Maintenance application 97

Summary
In this lesson, you transformed the search facility you built in Lesson 2 into a drill-down
facility for trip queries. You built a Trip Detail page to show more information about a
particular trip. You also formatted the Trip Search Results and Trip Detail pages using the
CFML DollarFormat and DateFormat functions. You linked the Trip Search Results
page with the Trip Detail page. You used the URLEncodedFormat CFML function to
ensure that data was correctly from one page to the other. Finally, by adding trip
maintenance and navigation buttons, you converted the Trip Detail page into the main
Trip Maintenance application page.

In the next lesson
In the next lesson, you will build the action pages required to implement the navigation
and maintenance buttons on the main Trip Maintenance application page.
98 Lesson 3 Creating a Main Application Page

LESSON 4

Validating Data to Enforce Business

Rules
In this lesson, you will enhance the Compass Travel Trip Maintenance application. The
exercises in this lesson will guide you through the steps of enhancing the application to
provide a page for the trip coordinator to add new trip offerings and update existing trips.
Further, you will add logic to validate that data entered against Compass Travel business
rules.

This lesson explains how to do the following tasks:
• Create a data entry form to capture user input information
• Develop an action page to process posted form variables
• Validate captured data in three ways

ColdFusion tags and functions introduced in this lesson

The following table identifies the ColdFusion tags and functions that you use in this
lesson to enhance the ColdFusion application:

Element Type Description

cfform Tag Builds a form with CFML custom control tags that provide more
functionality than standard HTML form input elements.

cfinput Tag Use inside cfform to place radio buttons, checkboxes, or text
boxes. Provides input validation for the specified control type.

cfselect Tag Used inside cfform, cfselect lets you construct a drop-down
list box form control. You can populate the drop-down list box
from a query, or use the option tag. You further use option
elements to populate lists. The syntax for the option tag is the
same as for its HTML counterpart.

FileExists Function Returns True if the file specified in the argument exists; otherwise
it returns False.
99

Enhancing the Trip Maintenance application
In this lesson and the next, you will create the code to implement the remaining
maintenance buttons on the main Trip Maintenance application page. The remaining
buttons are Add and Edit.

You will develop the data entry form to capture new trip information and validate the
data entered against Compass Travel business rules. You will then modify the data entry
form to edit existing trips. In the next lesson, you will continue to build on this
application by adding logic to insert and update the data to the Compass Travel database.

The following list identifies the trip edit components that you will create in this lesson.
• Trip Edit page You will create the Trip Edit page (see the following figure) bto add

new trips and edit existing trips. The page will be launched from the Add and Edit
buttons on the main Trip Maintenance application page (tripdetail.cfm). The fields
required to capture trip information are the same as those on the Trip Detail page
that you used to display trip information in Lesson 3.

• Trip Edit Action page You will develop an action page that will insert or update
trip data passed from the Trip Edit page into the trips table of the Compass Travel
database. In this lesson you will only add the logic to validate the data entered on the
Trip Edit page.
100 Lesson 4 Validating Data to Enforce Business Rules

Using an HTML form to collect data
Based on the data requirements determined in Lesson 1, the following figure shows the
Trip Edit data collection page:

Exercise: view the source and test the Trip Edit page

To view the source and test the Trip Edit data collection form:

1 Open an editor, then locate and open the file tripedit1.cfm in the solutions directory
\cfdocs\getting_started\solutions under your web root directory.

2 Review the HTML source code used to create the Trip Edit page. If you are not
fluent in HTML, the following table explains the use of some of the HTML tags in
the Trip Edit page. For more information on HTML, consult any HTML primer.

Tag Description

Form You create a data entry form by using the form tag. The form tag takes
two tag attributes; for example:

<form action="tripeditaction.cfm" Method= "Post">

Here, the action attribute specifies the name of the ColdFusion file that
the web server will navigate to in response to the form’s submission. The
method attribute specifies how data is returned to the web server. Submit
all ColdFusion forms using the Post method attribute.
Using an HTML form to collect data 101

3 Save the file as tripedit.cfm to the my_app directory.

4 View the tripedit.cfm in a browser and test the form by entering a trip name in the
Trip Name field then clicking Save. An error occurs.

5 View the form source (tripedit.cfm) in an editor to try to determine the cause of the
error. Notice that the <form> tag on line 6 of the source code has an action
attribute. This attribute indicates the page to receive the form values posted by the
tripedit.cfm page. Since the page, tripeditaction.cfm, does not exist yet, the
ColdFusion Server sends an error.

At this point, this form has little value since it does not store any information in the
database and does not enforce any business rules of Compass Travel. In the next exercise,
you will develop the action page to enforce the business rules.

Table You can format a data entry form and display its controls neatly, by using
the table tag, table, table row tag, tr, and the table data tag, td.

Form
Controls

The form requires controls to collect and submit user input. There are a
variety of types of form controls you can use. For this lesson, you will use
the following controls:

• <input>. Accepts text answers such as Trip Name and Trip Price.

• <input type=checkbox>. Asks yes or no questions, such as Deposit
Required?

• <select>,<option>. Provides user with a list of possible answers such as
the event type (Mountain Biking, Surfing, and so on).

• <textarea>. Gathers user input on multiple lines such as for the Trip
Description.

• <input type=submit>. Posts the information collected to the server.

Tag Description
102 Lesson 4 Validating Data to Enforce Business Rules

Developing code to validate data and enforce business
rules

As described in Lesson 1, it is important to define the right data type for each column on
the tables in the database. A fundamental concern, therefore, is ensuring that the
captured data is suitable for the column definitions in the Trips table. This type of
validation on a single field is often referred to as a single-field edit.

Compass Travel has other operating policies that involve evaluating the values from more
than one field. These validations, referred to as cross-field edits, are usually more difficult
to program. To assure that new trips are uniformly captured, Compass Travel has
published cross-field validations and single-field edits in its Compass Travel business
rules.

The following table lists the Compass Travel business rules for capturing and editing trip
information. This table identifies which rules requiring single or cross-field editing.

Ways to validate data

ColdFusion provides special tags to simply the process of enforcing business rules. Using
ColdFusion, it is possible to enforce business rules in several places. For example, you can
enforce some validation edits on the client. Other validation edits, you can enforce on the
server after the data entry form is submitted. You will explore these options in the
following sections.

Compass Travel new trip policy Edit type

1 All trips must be named. single-field

2 All trips must be accompanied by a full description. single-field

3 Each trip must be categorized by event type. Only valid event
types (1-surfing, 2-mountain climbing, and so on) are
permissible

single-field

4 Trip locations are required. single-field

5 The maximum number of people permitted on the trip must be
specified.

single-field

6 The trip departure and return dates must be specified for each
trip.

All trip dates must be valid future dates. Departure date must
precede return date.

single-field

cross-field

7 The trip’s price and base cost are required. Both values are
positive numeric values. The trip price must have at least a
20% markup over base cost.

cross-field

8 Any trip priced over $750 requires a deposit. cross-field

9 A trip leader must be identified. single-field

10 A photo must accompany all new trips. The photo image file
must reside within the images directory of the Compass Travel
website.

single-field
Developing code to validate data and enforce business rules 103

Validating data using a server-side action page
The first approach you will take to enforce Compass Travel business rules is to develop an
action page to validate the data collected on the data entry form. The action page receives
a form variable for every field on the form that contains a value. You use the cfif tag to
test the values of these fields to ensure that they adhere to Compass Travel business
policy.

Using a cfif tag to enforce business rules

The cfif tag lets you create conditions that evaluate to either True or False. Therefore,
to use the cfif tag to test whether a trip name was entered (business rule 1)on the Trip
Edit form, you code the following cfif statement:

<cfif Form.tripName EQ "">
<cfoutput> Trip Name cannot be blank. </cfoutput>

</cfif>

In the previous example, the cfif statement tests to see if the value of the form variable
tripName is blank. If the trip name condition evaluates to True, ColdFusion sends "Trip
name cannot be blank" to the browser.

Note: The keyword EQ is an operator used to test for equality. For more information about
the cfif tag and its operators, see Developing ColdFusion MX Applications with CFML.

Evaluating check box and radio button variables

Business rule 8 in the Compass Travel new trip policy requires you to test the value of the
depositRequired check box form variable. Check box and radio button variables are
only passed to the action page when the user selects these options on the form. Therefore,
an error occurs if the action page tries to use a variable that was not been passed.

To insure an error does not occur, you will use the IsDefined function in a cfif
statement to determine whether the user selected the Deposit Required check box option
on the form:

<cfif not IsDefined("Form.depositRequired")>
<cfset form.depositRequired = "No">

</cfif>

The cfif statement and the IsDefined function evaluate the value of the form variable
depositRequired to determine if a value exists. The statement not IsDefined returns
True if the specified variable is not found and the cfset statement sets the form variable
to No. No indicates a deposit is not required; Yes indicates a deposit is required.

Evaluating whether business rules fail

The purpose of the tripeditaction.cfm action page is to update the Compass Travel
database, so it is important to make certain that all the business rules are passed
successfully before the database insert is executed. Failure of any one of the rules negates
the insert.

One approach to ensuring that the action page considers each business rule is to create a
local variable with a cfset tag within the action page that tests to see if any of the
business rules failed.
104 Lesson 4 Validating Data to Enforce Business Rules

The cfset tag lets you manipulate the value of a variable. For example, the following
pseudocode initializes a variable to a specific value and checks the value using the cfif
statement:

<cfset isOk = "Yes">
if rule 1 fails then
<cfset isOK = "No"
...
if Rule n fails then
<cfset isOk = "No">
...
<cfif isOk = "Yes">
update the database
</cfif>

In the previous example, cfset initializes the local variable isOk to Yes. If any rule fails,
the variable isOK is set to No. The code then tests if isOk equals Yes, before executing the
SQL insert logic.

For more information about using the cfset and cfif tags and the IsDefined
function, see Developing ColdFusion MX Applications with CFML or the CFML Reference.

Exercise: create an action page with server-side validation

In this exercise you build an action page (tripeditaction.cfm)to validate the data passed to
the ColdFusion Server from the tripedit.cfm data entry page. You use the cfif and
cfset tags to build edits that ensure the data passed is valid per the Compass Travel
business rules. Additionally, you will use the ColdFusion IsDefined function to check to
see if data was entered in the data entry form (tripedit.cfm).

To build trip edit action page and validate data passed:

1 Open an editor and create a new page called tripeditaction.cfm in the my_app
directory. The new page appears as follows:
<html>
<head>

<title>Untitled</title>
</head>

<body>
</body>
</html>

2 To ensure that Compass Travel business rule 7 is met, insert the following code above
the <html> tag on the tripeditaction.cfm page. For your convenience, business rule 7
is repeated.

Business rule 7: The trip’s price and base cost are required. Both values are positive
numeric values. The trip price must have at least a 20% markup over base cost.
<!--- Base Cost is Required and must be Numeric --->
<cfif Form.baseCost EQ "" or IsNumeric(Form.baseCost) EQ False>

<cfset IsOk = "No">
<cfoutput>Base cost must be a number and cannot be blank.</cfoutput>

<cfelse>
Developing code to validate data and enforce business rules 105

<!--- Price must be 20% greater than Base Cost --->
<cfif Form.baseCost * 1.2 GT #Form.price#>

<cfset IsOk = "No">
<cfoutput>Price must be marked up at least 20% above cost.</cfoutput>

</cfif>
</cfif>

Note: The code for business rule 7 uses ColdFusion cfif and cfelse conditional
processing tags. The code inside the cfif tags only executes when the condition
evaluates to True. To perform other actions when the condition evaluates to False, the
cfelse tag is used. For more information about using conditional processing tags, see
Developing ColdFusion MX Applications with CFML.

3 Save the page.

4 Use the following steps to test the code to see if it meets the objective of business rule
7:

a View the tripedit.cfm page in the browser.

b In the form, enter the number 500 in both the Price and Base cost fields.

c Click the Save button.

The trip price error message displays: "Price must be marked up at least 20%
above cost."

d Click the browser Back button to return to the tripedit.cfm page.

e To avoid the error, enter the number 800 in the Price field and click Save.

5 Complete all the business rules using server-side validation. You must insert the code
for each business rule above the <html> tag. As an example, see the
tripeditaction1.cfm page in the solutions directory.

Tip: You can either modify your new tripeditaction.cfm page to include the code
necessary to meet all 10 business rules or you can copy the tripeditaction1.cfm page from
the solutions directory to tripeditaction.cfm in the my_app directory.

6 Test various combinations to make sure all the Compass Travel business rules are
enforced by filling out the fields on the form and clicking save.

Testing recommendations:

• Leave out required fields such as trip name or location.
• Enter in a non-numeric value in number of people such as one.
• Leave the entire form blank and click Save. The following messages appear:

Trip name cannot be blank. A trip leader must be specified. Photo file name must
be specified. The number of people must be a number and cannot be blank. Trip
location cannot be blank. Base cost must be a number and cannot be blank. Price
must be a number and cannot be blank.

Drawbacks of validating data on the server-side

Validating data on the server-side has two drawbacks. First, since the action page is used
for validation, the form page is not in the browser context when the error is trapped. The
user will, therefore, not get immediate feedback from the page where the data was
entered. Second, because data capture occurs on the client and validation on the server,
the number of round-trips to the server is increased. This can cause increased traffic on
106 Lesson 4 Validating Data to Enforce Business Rules

the network and the server. If the data is validated on the client, then only valid data is
posted to the server and traffic is reduced.

Validating data on the client using ColdFusion form tags
An alternative approach to server-side editing is to use client-side scripting. Client-side
scripting lets you validate the form data entered on the client prior to posting it to the
server. CFML provides alternative versions of standard HTML form tags that provide
advantages of client-side data validation.These data input tags include cfinput text,
cfinput radio, cfinput checkbox, cfselect, and others.

Among the improvements over standard HTML tags, ColdFusion form tags offer the
following attributes:

Examples of using the improved ColdFusion form tags

To use the improved form tags, you must replace the HTML form tag with the cfform
tag. The following code snippets show the use of the improved ColdFusion form tags.
The first code snippet shows how the duration field is validated on the server. The second
code snippet shows how ColdFusion form tags simplify field validation on the client.

Server-side validation approach (no ColdFusion form tag)

The following code is on the client (tripedit.cfm page):

<input size=3 name=duration>
Code on the server (tripeditaction.cfm page):
<!--- Duration is Required and must be Numeric --->
<cfif Form.numberPeople EQ "" or IsNumeric(Form.numberPeople) EQ False>

<cfset IsOk = "No">
<cfoutput>The number of people must be a number and cannot be blank.
</cfoutput>

</cfif>

Attribute Description

validate The data type that the field tag validates against. Values include: integer,
date, time, telephone, zipcode.

message The error message displayed if validation fails.

range The range of permissible values for this tag.

required An indicator of whether data is required for the corresponding tag.

Code Explanation

<cfif Form.numberPeople EQ "" or
IsNumeric(Form.numberPeople) EQ False>

The cfif tag evaluates the value of the form
variable numberPeople to determine if the user
entered a value. The IsNumeric function checks
whether the value entered on the form was a
numeric value.
Developing code to validate data and enforce business rules 107

Client-side validation approach using ColdFusion form tag

The following code is on the client:

<cfinput name="duration" message="Duration must be a number and cannot be blank."
validate="integer" required="Yes" size="3" maxlength="3">

Exercise: modify Trip Edit page to exploit ColdFusion form tags

In this exercise, you will use the ColdFusion form tags to move the validation of many
business rules from the server to the client. To do this, you will change the HTML form
tags in the tripedit.cfm page to ColdFusion form tags that validate these fields on the
client side. Next, you will remove the unneeded server-side single-field validation code
from tripeditaction.cfm page. Finally, you will test the form to ensure the client side
validation is working correctly.

To exploit the ColdFusion form tags on the Trip Edit page:

1 Open the tripedit.cfm in the my_app directory in your editor.

2 Locate and change the <form> and </form> tags to <cfform> and </cfform>,
respectively.

3 Change the <input> tags to <cfinput> tags and <select> tags to <cfselect> tags.
Note that the input type for the Submit button must remain a standard input rather
than cfinput.

4 For each ColdFusion form tag (cfinput, and cfselect), assign the appropriate
values:

For example, the Trip Name field requires the following code:
<cfinput maxlength = "50" size = "50" required = "Yes" name= "tripName"

message = "Trip name must not be blank">

Code Explanation

<cfinput name="duration"
message="Duration must be a number and
cannot be blank." validate="integer"
required="Yes" size="3" maxlength="3">

Use the cfinput tag to create the duration
input entry field within a cfform. The validate
attribute defines the field as an integer. The
required attribute indicates that the field must
have an entry. If the data is not entered or data
entered is not an integer, the message attribute
specifies that the message, "Duration must be...."
appears.

Attribute value Description

required Use this attribute for fields that must be filled out or selected.

validate Use this attribute for fields that requires a specific data type for
validation. Values include: integer, date, time, telephone, and zip
code.

message Use this attribute for fields that require an error message to be
displayed if validation fails. The message reflects the text that
describes the business rule.
108 Lesson 4 Validating Data to Enforce Business Rules

Tip: For additional help, review the completed code in the tripedit2.cfm within the
solutions directory. For more details about using ColdFusion form tags and their
attributes, see Developing ColdFusion MX Applications with CFML.

5 In your editor, open the tripeditaction.cfm in the my_app directory and delete the
code for the following single-field validation rule:

• Trip name is required.
• Trip leader is required.
• Photo file name is required.
• Number of people is required and must be numeric.
• Trip location is required.
• Base cost is required and must be numeric.
• Price is required and must be numeric.

Tip: You can either remove the single-field validations yourself or use
tripeditaction2.cfm file in the solutions directory. The file tripeditaction2.cfm in the
solutions directory is a copy of tripeditaction with the single-field edits deleted. Copy
tripeditaction2.cfm in the solutions directory to tripeditaction.cfm in the my_app
directory.

6 When you finish deleting the single-field validation rules, save the file.

The modified tripeditaction.cfm page appears as follows:
<!--- Action Page to edit and save Trip information for Compass Travel. --->
<!--- Single field edits have been removed in favor of client-side edits. --->
<!--- Make the passportRequired variable be No if it is not set
 (check box is empty) --->
<cfset isOk = "Yes">
<cfif not isdefined("Form.depositRequired")>
 <cfset form.depositRequired = "No">
</cfif>
<cfif Form.price GT 750 AND Form.depositRequired EQ "No">

<cfset IsOk = "No">
<cfoutput>Deposit is required for trips priced over $750.</cfoutput>

</cfif>
<cfif Form.basecost * 1.2 GT #Form.price#>

<cfset IsOk = "No">
<cfoutput>Price must be marked up at least 20% above cost.</cfoutput>

</cfif>
<cfif form.departureDate GT form.returnDate>

<cfset isOk = "No">
<cfoutput>Return date cannot precede departure date. Please

re-enter.</cfoutput>
</cfif><html>
<head>
<title>Trip Maintenance Confirmation</title>
</head>

<body>

<cfif isOk EQ "Yes">
<h1>Trip Added</h1>
<cfoutput>You have added #Form.TripName# to the trips database.
</cfoutput>

</cfif>
Developing code to validate data and enforce business rules 109

</body>
</html>

7 View the tripedit.cfm page in a browser and test the client- and server-side field
validations by filling out the fields on the form and clicking Save.

Testing recommendations:

• Omit required fields such as trip name or location.
• Make the departure date an invalid date like 12/32/2002.
• Enter a non-numeric value in number of people such as one.

Using cfselect tag to present valid event types
Currently the event types in tripedit.cfm are hard coded:

<!--- Field: eventType --->
<tr>

<td valign="top">Type of Event
</td>
<td>

<cfselect size="1" name="eventType" required="Yes" message="Type of
event must be selected.">

<option value="1" selected>Surfing</option>
<option value="2">Mountain Climbing</option>
<option value="3">Mountain Biking</option>
</cfselect>

</td>
</tr>

As described in Lesson 1, the tutorial application design includes a database table that
holds event types. The event type in the Trips table is an identifier used as a foreign key to
the eventtypes table (which holds the actual event names). In the previous code, each
option tag contains a value attribute and option text, such as Surfing. These values
come from the eventtypes table so that they are not hard-coded. The eventtypes table
column eventTypeID is used for the value attribute and the eventType for the literal
value that is displayed in the select box. To retrieve the data from this table, you must
include the following cfquery:

<cfquery name="GetEvents" datasource="CompassTravel">
SELECT eventType, eventTypeID
FROM eventtypes

</cfquery>

To exploit the query in the option tags, you can replace the HTML select tag with
cfselect.

The cfselect tag

The cfselect tag is an improved version of the HTML select tag. Like other
ColdFusion form tags, the cfselect tag provides the required and message attributes
that validate the data entered. Using the cfselect tag and the preceding cfquery, you
can implement the eventType field data entry as follows:
110 Lesson 4 Validating Data to Enforce Business Rules

<!--- Field: eventType --->
<tr>

<td valign="top">Type of Event
</td>
<td>
<cfselect size="1" name="eventType" required="Yes"

message="Type of event must be selected.">
<cfoutput query="GetEvents">
<option value="#GetEvents.eventTypeID#">

#GetEvents.eventType#
</option>
</cfoutput>
/cfselect>
</td>

</tr>

Exercise: use eventtypes table to load event types

Do the following steps to modify the Trip Edit page to display a list of event types from
the eventtypes table and add validation.

To display a list of event types from the eventtypes table and add validation:

1 View the tripedit.cfm page in a browser. Select the event types drop-down list. Notice
that only three event types appear in the list.

2 Open the tripedit.cfm in the my_app directory in your editor.

3 Add the following code above the <html> tag:
<cfquery name="GetEvents" datasource="CompassTravel">

SELECT eventType, eventTypeID
FROM eventtypes

</cfquery>

4 Replace the following eventtypes code lines:
<cfselect size="1" name="eventType" required="Yes"

message="Type of event must be selected.">
<option value="1" selected>Surfing</option>
<option value="2">Mountain Climbing</option>
<option value="3">Mountain Biking</option>

</cfselect>

with these lines:
<cfselect size="1" name="eventType" required="Yes"

message="Type of event must be selected.">
<cfoutput query="GetEvents">

<option value="#GetEvents.eventTypeID#">
#GetEvents.eventType#

</option>
</cfoutput>

</cfselect>

5 View the tripedit.cfm page in a browser. Select the event types drop-down list. Notice
that all seven event types appear in the list.
Developing code to validate data and enforce business rules 111

Using other client-side script to reduce edits on the server
If you were interested in moving as much of the business rule logic to the client as
possible, you might use other client-side scripting languages, such as JavaScript. By
exploiting ColdFusion form tags, you moved most of the responsibility for the business
rule checking from the server to the client. This section explains how to migrate
cross-field business rules to the client using JavaScript.

Web browsers can execute scripts based on events triggered on the current page. One of
the most popular scripting languages is JavaScript. ColdFusion Form tags include an
onValidate attribute that lets you specify your own JavaScript function for custom
validation.

The JavaScript form object, input object, and input object value are passed to the
specified JavaScript function. The function returns True if validation succeeds and False
otherwise. The onValidate and validate attributes are mutually exclusive.

Recall the Compass Travel New Trip business rule 6:

The trip departure and return dates must be specified for each trip.

All trip dates must be valid future dates. Departure date must precede return date.

One reason this rule is a good candidate for a JavaScript function is that the test for a
future date cannot be done using the ColdFusion form tags attributes such as validate
and range. The following JavaScript function (isitFutureDate) tests whether a date is
a valid future date.

function isitFutureDate(oForm, oTag, dateString) {
/*

function isitFutureDate
parameters: oForm, oTag, dateString
returns: boolean

oForm is the CFForm object. All onvalidate calls pass this argument.
This function ignores it.

oTag is the CFForm current tag object. All onvalidate calls pass this
argument. This function ignores it.

dateString is the value of the current tag object. It should be a date passed
as a string in the following

format: MM/DD/YYYY. This means that months and days require leading zeros!!

Returns true if the date passed is greater than today's date
Returns false if the date passed is NOT greater than todays
date.

*/

// Check to make sure the date is zero filled with 4 digit year and
//therefore 10 characters long.
if (dateString.length != 10)

return false;
var now = new Date();

var today = new Date(now.getYear(),now.getMonth(),now.getDate());

The trip departure and return dates must be specified for each trip.

All trip dates must be valid future dates. Departure date must precede return date.
112 Lesson 4 Validating Data to Enforce Business Rules

var testdate = new Date(dateString.substring(6,10),
dateString.substring(0,2)-1,
dateString.substring(3,5));

if (testdate > now)
return true;

else
return false;

}

Another reason that rule 6 requires JavaScript scripting is that it tests the values of more
than one field in a single edit. You must ensure that the return date field is greater than
departure date field. To do this, you add a JavaScript function to validate the trip date
range entered, and specify the function on the onValidate attribute of the returnDate
cfinput tag.

function validateTripDateRange(oForm, oTag, dateString)
{

/*
parameters: oForm, oTag, dateString
returns: boolean

oForm is the CFForm object. All onvalidate calls pass this argument.
This function ignores it.

oTag is the CFForm current tag object. All onvalidate calls pass this argument.
This function ignores it.

dateString is the value of the current tag object. It should be a date
passed as a string in the following

format: MM/DD/YYYY. This means that months and days require leading zeros!!

Returns true if the date passed is a future date greater than the departure date
Returns false if the date passed is NOT a future date greater than departure

date.
*/

//Edit to make sure that Return date is Later than departure date.
var returnDateString;

//First check to see if the departure Date is a valid future date
if (isitFutureDate(oForm, oTag, dateString) == false)

return false;

var departureDate = new Date(dateString.substring(6,10),

dateString.substring(0,2)-1,
dateString.substring(3,5));

returnDateString = document.forms(0).item("returnDate").value;

var returnDate = new Date(returnDateString.substring(6,10),

returnDateString.substring(0,2)-1,
returnDateString.substring(3,5));

if (departureDate < returnDate)

return true;
else

return false;
}

Developing code to validate data and enforce business rules 113

The important point about the preceding JavaScript is that you can use two functions,
isitFutureDate and validateTripDateRange, to verify whether a date is in the future
and the trip date range is valid, respectively.

Exercise: add JavaScript-based validation code

In this exercise you will modify the Trip Insert page to validate the departure and return
dates using the JavaScript functions provided.

To validate the departure and return dates using JavaScript functions:

1 Open tripedit.cfm in your editor and do one of the following:

Copy example code provided Copy the tripsedit3.cfm file from the solutions
directory and rename it to tripedit.cfm in the my_app subdirectory

or

Add JavaScript-based validation code to tripedit.cfm Follow these steps to
modify the tripedit.cfm page:

a Copy and insert the text from the scriptvalidation.txt in the solutions directory
right before the HTML body tag in tripedit.cfm.

b Modify the departureDate and returnDate input tags to include the
onValidate attributes as follows:
<cfinput name="departureDate" size="10" validate="date"

onvalidate="isitFutureDate" message="Departure date must be a valid
future date (mm/dd/yyyy).">

<cfinput size="10" name="returnDate" validate="date"
onvalidate="validateTripDateRange" message="Return date must be a valid
date greater than departure date (mm/dd/yyyy).">

c Save the tripedit.cfm in the my_app directory.

2 Test this page by opening the tripedit.cfm page in your browser.

3 Test the date validation by checking that each of the following tasks fail:

a Enter a date in the past for the departure date field; for example, 01/01/2000.

b Enter a departure date greater than the return date; for example, enter
02/01/2004 for the departure date, and 01/01/2004 for the return date.

4 Test the date validation and ensure that the proper data succeeds; for example, enter
01/01/2004 for the departure date, and 01/14/2004 for the return date.

5 Test for an invalid date by entering 12/32/2002 for the return date.

You would expect the application to reject this date. It does not. This is because the
validate attribute of a cfinput tag (returnDate in this example) is ignored when
there is a JavaScript routine specified in the onValidate attribute. To correct this,
you must write a test to validate the date using JavaScript (not addressed in this
tutorial).
114 Lesson 4 Validating Data to Enforce Business Rules

Validating the existence of the trip photo file
At this point, you have a more efficient application. The client is handling much of the
validation of the Compass Travel new trip business rules. Except for the trip photo file,
the server receives only valid data.

The trip photo file business rule does not fit nicely into this design, however. The last trip
photo business rule has two parts:
• A photo file name must accompany all new trips.
• The photo image file must reside within the images directory of the Compass Travel

website.

You used the required attribute for the photo cfinput tag to ensure that a file name is
entered. Now you must make sure that the file exists in the right directory so the
application can display it to customers.

Since browser clients are prohibited from doing standard file I/O (input/output) on the
web server, the Trips Maintenance application will use server-side validation to ensure the
existence of the photo file. You will add the business rule for the photo file to the
tripeditaction.cfm page.

To check to see if a file exists, ColdFusion provides a FileExists function. The syntax
of this function is:

FileExists(absolute_path)

This function returns True if the file specified in the argument does exist; otherwise, it
returns False. Assume that a data entry page has an input tag named "testFileName". If
a user types in a valid file name, the action page snippet from the following example
would display the message “The test file exists”:

<cfset fileLocation = "c:\inetpub\wwwroot\images\">
<cfif IsDefined("form.testFileName")>

<cfif form.testFileName is not "">
<!---Concatenate the File Location with the FileName passed in--->

<cfset fileLocation = fileLocation & form.testFileName>
<cfif FileExists(fileLocation)>

<cfoutput> The test file exists. </cfoutput>
</cfif>

</cfif>
</cfif>

Note: The trip photo images are stored in the following path relative to your web root
directory: \cfdocs\getting_ started\photos. Therefore, if your web root is
C:\inetpub\wwwroot, then the photos are stored in the C:\inetpub\wwwroot\cfdocs\getting_
started\photos directory.

For more information about the FileExists function, see CFML Reference.
Developing code to validate data and enforce business rules 115

Reviewing the code

The following table describes the code used to verify whether a file exists:

Exercise: use FileExists function to verify the existence of photo file name

In this exercise, you will use the Cold Fusion FileExists function to ensure that the
photo file name entered in the Trip Edit page exists in the location specified.

To verify that the photo file name exists:

1 Open the tripeditaction.cfm in the my_app directory in your editor.

2 In the tripeditaction.cfm page, do the following:

a Add logic to check that the user entered a valid photo file name by copying the
code from the photofilecheck.txt file in the solutions directory pasting it
immediately following the first <cfset isOk = "Yes"> statement.

b Verify that code you copied in step a is pointing to the correct photolocation
path. The path is specified in the <cfset PhotoLocation = "C:..."> tag.

For example, depending on your web server configuration, the photolocation
path might be:

• For MS Windows systems:
<cfset PhotoLocation
"C:\cfusionmx\wwwroot\CFDOCS\getting_started\Photos\">
or
<cfset PhotoLocation =
"C:\Inetpub\wwwroot\CFDOCS\getting_started\Photos\">

• For Linux or Solaris systems:
<cfset PhotoLocation =
"/opt/coldfusionmx/wwwroot/cfdocs/getting_started/photos/">
or
<cfset PhotoLocation =
"/<webserverdocroot>/cfdocs/getting_started/photos/">

Code Explanation

<cfif IsDefined("form.testFileName")> The cfif tag checks to see if the form variable
testFileName has been entered.

<cfset fileLocation = fileLocation &
form.testFileName>

The ColdFusion & operator in the cfset tag
combines the original value for fileLocation
from the first source line

("c:\inetpub\wwwroot\images\") with the value
of the testFileName form variable.

<cfif FileExists(fileLocation)> FileExists checks to see if the file indicated by
the fileLocation variable exists at the specified
disk location.
116 Lesson 4 Validating Data to Enforce Business Rules

3 Save the page and test it by opening the tripedit.cfm page in your browser.

Testing recommendations:

a In the Trip Edit page entering valid information in all the required fields but the
Photo File field.

b In the Photo File field, enter nowhere.jpg and click Save.

The following error message appears: Trip photo does not exist.

c To avoid the error, replace the invalid photo file name in the Trip Edit page with
somewhere.jpg and click Save.

The following message appears: Trip added.

Summary
As described in this lesson, ColdFusion offers several alternatives to validating data. If
you are familiar with standard page validation code, ColdFusion supports these
development approaches. However, ColdFusion form tags simplify data validation.
Additionally, you can use JavaScript with ColdFusion to execute client-side functions.

In the next lesson
Now that you are sure that your application can save valid data, in the next lesson, you
will write code to add trips to the database. Additionally, you will add logic to update
existing trip data in the Trips table.
Summary 117

118 Lesson 4 Validating Data to Enforce Business Rules

LESSON 5

Implementing the Browsing and

Maintenance Database Functions
In this lesson, you will enhance the Compass Travel ColdFusion application by providing
code to implement the navigation and maintenance database functions.

This lesson explains how to do the following tasks:
• Use SQL SELECT to move to the first, last, next and previous rows in the trips table
• Add code to the main application page to browse the trips table
• Use SQL DELETE to delete rows in the trips table
• Use cflocation to link the search facility built Lesson 1 to the main Trip

Maintenance application page.

ColdFusion tags and functions introduced in this lesson

The following table identifies the ColdFusion tag and structure that you use in this lesson
to enhance the Trip Maintenance application:

Element Type Brief description

cflocation Tag Opens a ColdFusion page or HTML file.

URL Structure Structure to hold the variables within a URL.
119

Enhancing the Trip Maintenance application
In this lesson, you will make enhancements to the sample Trip Maintenance application
that you created in previous lessons. In Lesson 4, you added buttons to the Trip Detail
page to browse, add, edit, delete or search for records in the database. In this lesson you
will build the action pages that implement the actions for these buttons.

Page flow

You will combine the Trip Detail page and the search pages you built in the previous
lessons with a maintenance action page and a navigation action page you will build in
this lesson. In the final two lessons you will build a Trip Edit page to complete the trip
maintenance facility. The following figure shows the flow of the finished Trip
Maintenance application pages:

Notice that the Trip Detail page is at the center of the Trip Maintenance application.
Depending on the user action, the Trip Detail page navigates the records in the database
or connects to the appropriate page to add, edit, delete, or search for records in the
database.

In order for the application to process the user actions from the Trip Detail page, you
must build the two action pages for the navigation and maintenance functions.

Navigation action page

This navigation action page determines which triprecord displays on the Trip Detail page
after the user presses one of the navigation buttons. There is no HTML output displayed
from this action page. Instead, this page uses dynamic SQL to identify the tripID that
must display on the Trip Detail page. In this dynamic SQL statement the proper tripID
is passed as a parameter to the URL then redirects it to the Trip Detail page.

Trip Search page

Trip Search Results page

Trip Detail (main) page

Trip Edit page

Navigation Action page Maintenance Action page

move first, last,
next, or previous delete

add or edit
120 Lesson 5 Implementing the Browsing and Maintenance Database Functions

Maintenance action page

The maintenance action page processes a user’s maintenance request from the Trip Detail
page. The request can be any of the following actions:
• Delete the currently displayed trip.
• Launch the search facility.
• Add a new trip (implemented in the previous two lessons).
• Update the currently displayed trip (implemented in the previous two lessons).

Application development steps

You will review or participate in the following application construction steps:

Using dynamic SQL to browse (navigate) the Trips table
The tripID uniquely identifies a trip in the Trips table. In Lesson 3, you displayed the
Trip Detail page for a trip by passing the ID as a parameter of the URL launching the
detail page. Therefore, you would navigate to the following URL to display the detail
information for a trip with the ID of 20:

http://localhost/cfdocs/getting_started/my_app/tripdetail.cfm?ID=20

The main objective of the Navigation Action page (navigationaction.cfm) is to navigate
to the Trip Detail page with a proper URL identifying the correct tripID based on the
navigation button clicked. Unfortunately, because trips are added and later deleted, trips
might not be ordered sequentially by ID. There can be missing IDs where trips were
deleted. Therefore, if the current trip ID is 1 and the user clicks the next navigation
button, it will not navigate to 2.

In order to ensure that the proper tripID is retrieved, you must create a query to the
database to find out what the next (or previous, first, or last) ID is based on the current
tripID. The navigation action page uses dynamic SQL to build a query to find the
appropriate ID to use.

In Lesson 2, you used ColdFusion string manipulation to construct the proper SQL
SELECT WHERE clause. In this lesson, you will use a similar approach to build the
WHERE clause for navigation. Additionally, it is necessary to use the proper ORDER
BY clause to select the correct trip row.

Steps Description

1 Build the navigation action page to navigate and display the proper trip record.

2 Build the maintenance action page to process the user’s selection on the Trip
Detail page.
Enhancing the Trip Maintenance application 121

For example, if the current tripID equals 6, the following table identifies the proper
SQL statement based on the navigation button clicked by the user:

Limiting the number of result rows

Each of the SQL statements in the previous table return a result set of trips rows. The
result set can range from zero to any number of rows. The navigation action page must
limit the result set count to 1, since only the initial row in the result set is needed for the
Trip Detail page display.

ColdFusion provides the maxRows attribute on the cfquery tag for this purpose. This
attribute limits the number of result rows returned from the database. To show only a
single row at a time in the Trip Detail page, set maxRows to 1.

The navigation action page

To properly build the SQL SELECT statement for previous and next row navigation, you
must know the current tripID. This is the reason for using the hidden input tag
RecordID on the Trip Detail page. You can then use the form variable #Form.RecordID#
in the navigation action page for building the proper test in the WHERE clause of the
SQL SELECT statement. The following code (from the navigationaction.cfm) processes
the navigation button requests on the Trip Detail page:

<!--- NAVIGATION BUTTONS --->

<cfquery name="TripQuery" dataSource="compasstravel" maxRows=1>

SELECT tripID FROM trips

<cfif IsDefined("Form.btnPrev.X")>
WHERE tripID < #Form.RecordID#
ORDER BY tripID DESC

<cfelseif IsDefined("Form.btnNext.X")>
WHERE tripID > #Form.RecordID#
ORDER BY tripID

<cfelseif IsDefined("Form.btnFirst.X")>
ORDER BY tripID

Navigation
button

SQL statement to navigate to
correct trip ID SQL statement description

First Row SELECT tripID FROM trips
ORDER BY tripID

Returns the list of all tripIDs in
ascending (1,2,3...) order.

Previous Row SELECT tripID FROM trips
WHERE tripID < 6
ORDER BY tripID DESC

Returns the list of all tripIDs less
than 6 in descending (5,4,3...) order.

Next Row SELECT tripID FROM trips
WHERE tripID > 6
ORDER BY tripID

Returns the list of all tripIDs greater
than 6 in ascending (7,8,9...) order.

Last Row SELECT tripID FROM trips
ORDER BY tripID DESC

Returns the list of all tripIDs in
descending (99,98,97...) order.
122 Lesson 5 Implementing the Browsing and Maintenance Database Functions

<cfelseif IsDefined("Form.btnLast.X")>
ORDER BY tripID DESC

</cfif>

</cfquery>
<cfif TripQuery.RecordCount is 1>

<cflocation url="tripdetail.cfm?ID=#TripQuery.tripID#">

<cfelese>
<cflocation url="tripdetail.cfm?ID=#Form.RecordID#">

</cfif>

Reviewing the code

The following table describes the code used to process the navigation button requests:

Code Explanation

<cfquery
name="TripQuery"
dataSource="compasstravel"
maxRows=1>

The cfquery tag identifies that a query
named "TripQuery" will be executed
against the "CompassTravel" data
source. The number of rows returned
cannot exceed 1 (maxRows=1).

SELECT tripID FROM trips The SQL SELECT statement will always
start with "SELECT tripID FROM trips".

<cfif IsDefined("Form.btnPrev.X")>
WHERE tripID < #Form.RecordID#
ORDER BY tripID DESC

<cfelseif IsDefined("Form.btnNext.X")>
WHERE tripID > #Form.RecordID#
ORDER BY tripID

<cfelseif IsDefined("Form.btnFirst.X")>
ORDER BY tripID

<cfelseif IsDefined("Form.btnLast.X")>
WHERE tripID > #Form.RecordID#
ORDER BY tripID DESC

</cfif>

</cfquery>

The cfif tag checks if the user pressed
a navigation button on the browse page.
The X property is checked since the
buttons on the detail page use image
type HTML input tags. The X property is
a mouse offset that gets sent when you
click a graphic button.

The WHERE and ORDER BY clauses
will vary depending on the navigation
button clicked by the user.

<cfif TripQuery.RecordCount is 1>
<cflocation
url="tripdetail.cfm?RecordID=#TripQuery.tripID#">
<cfelse>
<cflocation
url="tripdetail.cfm?RecordID=#Form.RecordID#">
</cfif>

The cfif tag checks if the query
returned a row to display. If it did, use that
tripID to form a URL to navigate to
using the cflocation tag. If the query
returned no rows, navigate back to the
detail page with current record id passed
in the hidden form variable RecordID.
Enhancing the Trip Maintenance application 123

Exercise: implement trip record browsing (navigation)

Follow these steps to implement the trip record browsing functionality (navigation
buttons) on the Trip Detail page. In this exercise, you will use the supplied navigation
action page to implement and test the navigation buttons on the Trip Detail page.

To implement the trip record browsing functionality:

1 Copy the navigationaction.cfm file from the solutions subdirectory in the
getting_started directory to the my_app directory.

2 View the tripdetail.cfm page from the my_app directory in a browser and test the
navigation buttons as follows:

a Click Next Row.

The Trip Detail page shows information about the second trip.

b Click Previous Row.

The Trip Detail page shows information about the first trip.

c Click Last Row.

The Trip Detail page shows information about the last trip.

d Click First Row.

The Trip Detail page shows information about the first trip.

Building the maintenance action page
The maintenance action page (maintenanceaction.cfm) handles the user’s maintenance
requests. The delete request is handled directly within the maintenance action page. The
search request is accomplished by linking the Trip Search page. The maintenance action
page navigates to another page for data capture for add and edit requests.

You will build the tripedit.cfm page to capture the information for add and edit requests
in the next lesson. The following table identifies the button clicked on the Trip Detail
page with the action taken in the maintenance action page:

Maintenance action page code

ColdFusion creates a variable only for the button that the user clicked. Therefore, the
IsDefined function is used to test which action to take. The following code is an excerpt
from the maintenanceaction.cfm page that tests which action to take:

<cfif IsDefined("Form.btnSearch")>
...
<cfelseif IsDefined("Form.btnDelete")>
...

Button Action taken in maintenaceaction.cfm

Search Navigate to tripsearch.cfm built in Lesson 4.

Delete Execute SQL DELETE statement for current tripID.

Edit Navigate to tripedit.cfm with ID parameter in URL set to current tripID.

Add Navigate to tripedit.cfm with ID parameter in URL set to blank.
124 Lesson 5 Implementing the Browsing and Maintenance Database Functions

<cfelseif IsDefined("Form.btnEdit")>
...
<cfelseif IsDefined("Form.btnAdd")>
...
</cfif>

The first two buttons are the easiest to handle because they do not require building any
new pages. Therefore, you will implement the functionality for the Search and Delete
buttons first.

Linking the Trip Detail page to the Trip Search page
The ColdFusion cflocation tag navigates from the current page to a target HTML or
CFML page. The URL attribute contains the name of the target page and any
arguments. The code to navigate to the search page (tripsearch.cfm) follows:

<cflocation url="tripsearch.cfm">

Deleting the current trip record shown on the Trip Detail page

Before you can write the code to delete a trip, you must understand the underlying SQL
statement to delete rows from the trips table.

SQL DELETE Statement

The SQL DELETE statement removes existing rows in a relational table. The format of
the DELETE statement is as follows:

DELETE FROM table_name WHERE column_name = some_value

Consider a database table named Clients that holds information about people with the
following rows:

To delete everyone from New York from the table, use the following statement:

DELETE FROM Clients WHERE City = 'New York'

After the database management system processed the preceding statement, the table
would contain the following row only:

To ensure that the Trip Maintenance application deletes only the proper trip, you must
use the unique tripID key when issuing the SQL DELETE. The RecordID field holds
the tripID. Therefore, using the hidden RecordID input tag from the Trip Detail page,
the following SQL statement deletes a row from the Trips table reads:

LastName FirstName Address City

Jones Tom 50 Main St New York

Adamson Anita 521 Beacon St Boston

Green Peter 1 Broadway New York

LastName FirstName Address City

Adamson Anita 521 Beacon St Boston
Enhancing the Trip Maintenance application 125

DELETE FROM trips WHERE tripID = #Form.RecordID#

Exercise: handle search and delete in maintenance action page

In this exercise, you will link the search function developed in Lesson 4 to the main page.
Further, you will provide code to support the trip delete function. Then you will test this
functionality by deleting a trip, then searching for it to ensure it was deleted successfully.

Follow these steps to create the maintenance action page that implements the search and
delete functionality.

To create the maintenance action page:

1 In your editor, create a CFM page.

2 Delete any default lines of code if your editor automatically adds them.

3 To handle the Search and Delete buttons from the Trip Detail page, enter the
following code:
<!--- SEARCH BUTTON--->
<cfif IsDefined("Form.btnSearch")>

<cflocation url="tripsearch.cfm">
<!--- DELETE BUTTON --->
<cfelseif IsDefined("Form.btnDelete")>

<cfquery name="DeleteRecord" dataSource="CompassTravel">
DELETE FROM trips WHERE tripID = #Form.RecordID#

</cfquery>
<cflocation url="tripdetail.cfm">

</cfif>

4 Save the page as maintenanceaction.cfm in the my_app directory.

5 View the tripdetail.cfm page in a browser.

The current trip is Nepal. Notice that the destination for Nepal Summit Challenge
trip is Imji Himal, Nepal.

6 Click Search.

The Trip Search page appears.
126 Lesson 5 Implementing the Browsing and Maintenance Database Functions

7 In the Trip Search page, select begins with in the selection box for Trip Location.
Then enter Imji in the trip location value field.

The following figure shows the search form looks:

8 Click Search. Verify that only a single trip is found whose location begins with Imji.

9 To return to the Trip Detail page for this trip, click the hyperlink for Imji.

10 In the Trip Detail page, click Delete to remove this record from the Trip database file.

11 Verify that the trip record was removed from the Trips database by repeating the
search in step 7.
Enhancing the Trip Maintenance application 127

Summary
In this lesson, you converted the Trip Detail page from the search result display into a
trip browser by using cfquery with SQL SELECT. The browser enables users to navigate
sequentially through the Trips table. You also limited the result set of the dynamic query
using the MaxRows attribute of the cfquery tag.

By implementing the Maintenance Action page, you enabled users to take action on the
current trip. You used the ColdFusion cflocation tag to link the search page to the Trip
Detail page. Additionally, you used cfquery and SQL DELETE to delete the current
trip.

In the next lesson
You have implemented two of the four maintenance buttons on the Trip Detail page. In
the next lesson, you will implement the Add and Edit buttons. Because these functions
require user input, you will build a new page, tripedit.cfm, to capture this information.
The user input must be validated against the Compass Travel business rules before the
data is saved to the database. Therefore, in the next lesson, you also will implement the
business rule validation. In the final lesson, you will add the database update logic.
128 Lesson 5 Implementing the Browsing and Maintenance Database Functions

LESSON 6

Adding and Updating SQL Data
In this lesson, you will complete the Compass Travel Trip Maintenance application. The
exercises will guide you through the steps of adding the database update logic to add new
trip offerings and update existing trips in the Compass Travel database.

This lesson explains how to do the following tasks:
• Modify the Trip Edit page to link the add and update functions to the main

application page.
• Write code to insert new trips using SQL.
• Write code to insert new trips without using SQL.
• Write code to update several records in the Trips table.

ColdFusion tags and functions introduced in this lesson

The following table identifies the ColdFusion tags and functions that you use in this
lesson to enhance the ColdFusion application:

Element Type Description

cfinsert Tag Inserts records in a JDBC data source.

cfupdate Tag Updates a records in a JDBC data source.
129

Completing the Trip Maintenance application
In Lesson 5, you created the tripeditaction.cfm page to contain server side edits for the
trip edit data entry form. In this final lesson, you will complete the tripeditaction.cfm
page. To complete the action page, you will write code to do these tasks:
• Add trips to the Compass Travel database using the cfquery tag and the SQL

INSERT statement.
• Add trips to the Compass Travel database using the cfinsert tag.
• Update the current trip using the cfupdate tag.
• Link the current trip to be updated or added by the tripeditaction.cfm with the

tripedit.cfm page.

In addition to completing the Trip Maintenance application, you will develop a
ColdFusion page to update all the prices in the database using the cfquery tag and the
SQL UPDATE statement.

Writing code to save new trips to the database
In Lesson 5, you built a Trip Edit page to collect the data. Now you can modify the Trip
Edit action page to insert the data into the database. There are two approaches to
inserting data into a SQL database:
• Build a SQL INSERT statement and execute it using the cfquery tag.
• Use the ColdFusion cfinsert tag. This approach eliminates the need for you to

learn SQL syntax.

Adding data using SQL INSERT with cfquery approach

In previous lessons, you used the SQL SELECT statement to retrieve data and the SQL
DELETE statement to delete data from the Trips table in the Compass Travel database.
To add new trips to the database using SQL, you must understand the syntax of the SQL
INSERT statement.

The SQL INSERT statement inserts new rows into a relational table. The format of the
INSERT statement is as follows:

INSERT INTO table_name
VALUES (value1, value2,....)

The database table named Clients contains information about people in the following
rows:

LastName FirstName Address City

Tom Jones 12 State St Boston

Peter Green 1 Broadway New York
130 Lesson 6 Adding and Updating SQL Data

After the following SQL statement executes:

INSERT INTO Clients
VALUES ('Smith', 'Kaleigh', '14 Greenway', 'Windham')

the table contains the following rows:

Notice that the values inserted in the table were surrounded by single quotation marks.
In SQL, you must surround any text or date values with single quotation marks but
numeric values are not.

Alternatively, you can specify the columns for which you want to insert data. This
approach lets you insert data to some columns while omitting others. The syntax for this
approach is as follows:

INSERT INTO table_name (column1, column2,...)
VALUES (value1, value2,....)

For example, the syntax to add Kaleigh Smith of Windham, with the address unknown,
you use the named column approach:

INSERT INTO Clients (LastName, FirstName, City)
VALUES ('Smith', 'Kaleigh', 'Windham')

You used the cfquery tag to execute SQL from ColdFusion. The cfquery tag passes
SQL statements to your data source. As described in Chapter 4, a data source stores
information about how to connect to an indicated data provider, such as a relational
database management system. The data source you established in Chapter 4 stored
information on how to access the Compass Travel database. The data source name was
called “CompassTravel”.

Exercise: insert trip data using SQL INSERT and cfquery

In this exercise you will add code to pass the data entered on the Trip Maintenance
collection form and insert into the Compass Travel database. To do this, you will be
modifying the trip insert action page to use the SQL INSERT statement and the
ColdFusion cfquery tag.

To add data using SQL INSERT and cfquery:

1 Open tripeditaction.cfm in the my_app directory in your editor.

2 Locate the <cfif isOk EQ "Yes"> tag near the end of the file. After the <H1> Trip
Added</H1> line, add the following code to insert the data from the Form variables
into the Trips table.

LastName FirstName Address City

Tom Jones 12 State St Boston

Peter Green 1 Broadway New York

Smith Kaleigh 14 Greenway Windham
Completing the Trip Maintenance application 131

Tip: To save time, you can copy this code from the tripsinsertquery.txt file (for Windows
users) or from tripinsertqueryunix.txt (for UNIX users) in the solutions directory.

3 Save the page and test it by opening the tripedit.cfm in your browser.

For Code

Windows users,
using MS Access

<!--- Insert the new trip record into the Compass
Travel Database --->

<cfquery name="AddTrip" datasource="compasstravel">
INSERT INTO Trips (tripName, eventType, tripDescription,

tripLocation,departureDate, returnDate, price, tripLeader,
photo, baseCost, numberPeople, depositRequired)

VALUES ('#Form.tripName#', #Form.eventType#,
'#Form.tripDescription#',
'#Form.tripLocation#','#Form.departureDate#',
'#Form.returnDate#',
#Form.price#, '#Form.tripLeader#', '#Form.photo#',
#Form.baseCost#, #Form.numberPeople#, '#Form.depositRequired#'

</cfquery>

UNIX users, using
Pointbase

<!--- Insert the new trip record into the
Compass Travel Database --->

<!--- Use local variables to convert dates to JDBC format
(yyyy-mm-dd) from input format (mm/dd/yyyy) --->

<cfset JDBCdepartureDate = #Right(Form.departureDate,4)#
& "-" & #Left(Form.departureDate,2)# & "-"
& #Mid(Form.departureDate,4,2)#>

<cfset JDBCreturnDate = #Right(Form.returnDate,4)# & "-"
& #Left(Form.returnDate,2)# & "-"
& #Mid(Form.returnDate,4,2)#>

<cfquery name="AddTrip" datasource="CompassTravel">
INSERT INTO Trips (tripName, eventType,
tripDescription, tripLocation,

departureDate, returnDate, price, tripLeader, photo,
baseCost, numberPeople,depositRequired)

 VALUES ('#Form.tripName#', #Form.eventType#,
'#Form.tripDescription#',

'#Form.tripLocation#', Date'#JDBCdepartureDate#',
Date'#JDBCreturnDate#',
#Form.price#,'#Form.tripLeader#', '#Form.photo#',
#Form.baseCost#, #Form.numberPeople#, '#Form.depositRequired#')

</cfquery>
132 Lesson 6 Adding and Updating SQL Data

4 In the tripedit.cfm page, fill in the fields with the values in the following figure, then
click Save:

After the new trip is written to the database, the following message appears: Trip is
added.

5 To verify that the save worked, open tripsearch.cfm in the my_app directory in your
browser.

6 In the Trip Search page, enter Begins With Nor in the Trip Location criterion value
in the Search page as in the following figure:
Completing the Trip Maintenance application 133

7 Click Search.

The TripResults page appears:

8 Click the link to the NH White Mountains to display the details of the trip you just
added. Verify that all the fields were saved correctly.

The following page appears:

9 Click the Delete button to delete this record so that you can reuse the steps 4-8 of this
exercise in the next exercise.
134 Lesson 6 Adding and Updating SQL Data

Reviewing the code

The following table describes the SQL INSERT and cfquery code used to add data:

For more information about adding data to a database using SQL and cfquery, see
Developing ColdFusion MX Applications with CFML. For more information about SQL,
consult any SQL primer.

Adding data using the simpler, cfinsert approach

For those who would prefer not to have to remember SQL syntax to add information to
SQL databases, ColdFusion simplifies the coding for inserting SQL rows through the use
of the cfinsert tag. As you might expect, the cfinsert tag has datasource and
tablename attributes to specify where the data is inserted. The tag also has a
formfields attribute to identify which fields to insert. Formfields is a
comma-separated list of form fields to insert. If this attribute is not specified, all fields in
the form are included in the operation. The following example uses the cfinsert with
these attributes:

<cfinsert datasource="CompassTravel" tablename="Trips"
formfields="tripName, eventType, tripDescription, tripLocation, departureDate,

returnDate, price, tripLeader, photo, baseCost, numberPeople,
depositRequired">

Code Explanation

<cfquery name="AddTrip"
datasource="CompassTravel">

Using the datasource attribute, cfquery connects
to the data source CompassTravel and returns a
result set identified by the name attribute.

INSERT INTO Trips (TripName,
EventType, tripDescription,
tripLocation, departureDate,
returnDate, price,
tripLeader,photo,
baseCost, numberPeople,
depositRequired)
 VALUES ('#Form.TripName#',
#Form.EventType#,
'#Form.tripDescription#',
'#Form.tripLocation#',
'#Form.departureDate#',
'#Form.returnDate#', #Form.price#,
'#Form.tripLeader#',
'#Form.photo#',
#Form.baseCost#,
Form.numberPeople#,
'#Form.depositRequired#)

The SQL INSERT statement identifies that the data
are to be inserted into the Trips table. The table
column names are cited in a comma separated list
surrounded by parenthesis (TripName,
EventType....) after the table name Trips.

The VALUES keyword indicates the list of values
that are inserted into the columns in the same order
as the columns are specified earlier in the
statement.

The values refer to form variables passed from the
data entry form to the action page. The variables are
surrounded by pound signs; for example,
#Form.baseCost#. Additionally, note that if the
column data type is a string data type, then the
values are surrounded by single quotation marks;
for example: '#Form.TripName#'.
Completing the Trip Maintenance application 135

The cfinsert tag used in the previous code snippet uses the following attributes:

Exercise: insert trip data using cfinsert

In this exercise, you change the approach the action page uses to insert the data into the
database. You will replace the SQL INSERT statement with the cfinsert tag.

To add data using cfinsert:

1 Open tripeditaction.cfm from the my_app directory in your editor and do the
following:

a Remove the entire AddTrip cfquery that you added in the last exercise (from the
beginning <cfquery name ="AddTrip" datasource="CompassTravel"> tag to
the </cfquery> end tag).

b Add the following cfinsert tag to insert data into the trips table in the same
location as the code that you just deleted:
 <cfinsert datasource="CompassTravel" tablename="TRIPS">

2 Save the page and test it by opening the tripedit.cfm page in your browser.

3 Follow steps 4 through 9 in the previous exercise to verify this approach to inserting
new trips.

For more information about adding data to a database using the cfinsert tag, see
Developing ColdFusion MX Applications with CFML.

Updating a SQL row using cfupdate
To update an existing SQL row, ColdFusion offers a simple approach for updating SQL
rows through the use of the cfupdate tag. Like cfinsert, the cfupdate tag has
datasource and tablename attributes to specify where the data is to be inserted. The
tag also has a formfields attribute to identify which fields are to be inserted.
Formfields is a comma-separated list of form fields to insert. If this attribute is not
specified, all fields in the form are included in the operation.

All the fields of the tripedit.cfm page have corresponding columns in the Trips table, so
you can omit the FormFields attribute for both the cfinsert and cfupdate tags. If the
tripID form field is passed from the TripEdit page the cfupdate tag is used otherwise the
cfinsert tag is executed. The following example uses the cfupdate and cfinsert
without the FormFields attribute:

<cfif not isdefined("form.tripID")>
<cfinsert datasource="CompassTravel" tablename="Trips">

<cflocation url="tripdetail.cfm">
<cfelse>

Attribute Description

datasource The data source name associated with the database where the data is
inserted.

tablename The name of the SQL table within the database where the data are
inserted.

formfields A comma-separated list of form fields to insert.
136 Lesson 6 Adding and Updating SQL Data

<cfupdate datasource="CompassTravel" tablename="Trips">
<cflocation url="tripdetail.cfm?ID=#Form.tripID#">

</cfif>

Reviewing the code

The following tables describes the cfinsert and cfupdate code:

Exercise: update trip data using cfupdate

In this exercise, you will add the code to update the trip data into the database. You will
add the cfupdate tag to the tripeditaction.cfm page.

To update the database using cfupdate:

1 In an editor, open tripeditaction3.cfm from the solutions directory.

2 Review the code to update the database (the last 12 lines of code).

3 Verify that the correct photolocation path is specified. This path is specified in the
<cfset PhotoLocation = "C:..."> tag.

For example, depending on your web server configuration, the photolocation path
might be:

• For MS Windows systems:
<cfset PhotoLocation
"C:\cfusionmx\wwwroot\CFDOCS\getting_started\Photos\">

or
<cfset PhotoLocation =
"C:\Inetpub\wwwroot\CFDOCS\getting_started\Photos\">

• For Linux or Solaris systems:
<cfset PhotoLocation = "/opt/coldfusionmx/wwwroot/cfdocs/
getting_started/photos/">

or
<cfset PhotoLocation = "/<webserverdocroot>/cfdocs/

getting_started/photos/">

4 Save the file as tripeditaction.cfm in the my_app directory.

Code Explanation

<cfif not isdefined("form.tripID")>
<cfinsert datasource="CompassTravel"
tablename="Trips">

<cflocation url="tripdetail.cfm">
<cfelse>
<cfupdate datasource="CompassTravel"

tablename="Trips">
<cflocation url="tripdetail.cfm?ID=#Form.tripID#">
</cfif>

The ColdFusion function IsDefined
determines whether the hidden field
tripID was passed to the action page
from tripedit.cfm. If there is a current
trip, the isDefined function returns
True. When there is no current trip,
the cfif statement is True. When the
cfif statement is True , the cfinsert
tag executes and the main page
displays with the updated trip. If the
cfif statement evaluates to False, the
cfinsert statement executes and the
first trip displays in the main page.
Completing the Trip Maintenance application 137

For more information about adding data to a database using the cfupdate tag, see
Developing ColdFusion MX Applications with CFML.

Now that you have built the data entry form adding new and updating existing trips, you
will add the logic to link it to the main trip page to test the update logic.

Linking the Trip Edit page to the main page
As discussed in Lesson 4, the action page for the maintenance buttons on the main page
is maintenanceaction.cfm. You previously added code for the Search and Delete buttons.
In the next exercise you will insert the code to call tripedit.cfm from maintenance.cfm as
follows:

<!--- EDIT BUTTON --->
<cfelseif IsDefined("Form.btnEdit")>

<cflocation url="tripedit.cfm?ID=#Form.RecordID#">
<!--- ADD BUTTON --->
<cfelseif IsDefined("Form.btnAdd")>

<cflocation url="tripedit.cfm">
</cfif>

Notice that when the user clicks the Add button, the maintenanceaction.cfm navigates to
tripedit.cfm passing no arguments. Conversely, when the user clicks the Edit button, the
Trip Edit page passes the current record id. The Trip Edit page must handle both cases.
When a RecordID is passed on the URL, tripedit.cfm must query the database and fill
the form with the data for the corresponding trip. The following code properly initializes
the trip edit form:

<cfif IsDefined("URL.ID")>
<cfquery name="TripQuery" datasource="CompassTravel" maxrows="1">

SELECT tripName, eventType, tripDescription, tripLocation,
departureDate, returnDate, price, tripLeader, photo, baseCost,
numberPeople, depositRequired, tripID

FROM trips
<cfif IsDefined("URL.ID")>

WHERE tripID = #ID#
</cfif>

</cfquery>
<!-- Set the local variables -->

<cfset tripName = '#TripQuery.tripName#'>
<cfset eventType = #TripQuery.eventType#>
<cfset tripDescription = '#TripQuery.tripDescription#'>
<cfset tripLocation = '#TripQuery.tripLocation#'>
<cfset departureDate = DateFormat(#TripQuery.departureDate#,"mm/dd/yyyy")>
<cfset returnDate = DateFormat(#TripQuery.returnDate#,"mm/dd/yyyy")>
<cfset price = #TripQuery.price#>
<cfset tripLeader = '#TripQuery.tripLeader#'>
<cfset photo = '#TripQuery.photo#'>
<cfset baseCost = #TripQuery.baseCost#>
<cfset numberPeople = #TripQuery.numberPeople#>
<cfset depositRequired = '#TripQuery.depositRequired#'>
<cfelse>
<cfset tripName = ''>
<cfset eventType = ''>
<cfset tripDescription = ''>
138 Lesson 6 Adding and Updating SQL Data

<cfset eventTypeIdentifier = #TripQuery.eventType#>
<cfset tripLocation = ''>
<cfset departureDate = ''>
<cfset returnDate = ''>
<cfset price = ''>
<cfset tripLeader = ''>
<cfset photo = ''>
<cfset baseCost = ''>
<cfset numberPeople = ''>
<cfset depositRequired = ''>

</cfif>

Reviewing the code

The following table describes the code used to properly initialize the trip edit form:

Exercise: linking the Add and Edit buttons

In this exercise you will link the Add and Edit buttons on the Trip Detail page with the
Trip Edit page.

To link the add and update buttons on the Trip Detail page:

1 Open maintenanceaction.cfm in the my_app directory in your editor.

2 Locate the </cfif> tag at the end of the file.

Code Explanation

<cfif IsDefined("URL.ID")>
<cfquery name="TripQuery" datasource="CompassTravel"
maxrows="1">

SELECT tripName, eventType, tripDescription,
tripLocation, departureDate, returnDate, price,
tripLeader, photo, baseCost, numberPeople,
depositRequired, tripID

FROM trips
<cfif IsDefined("URL.ID")>

WHERE tripID = #ID#
</cfif>

</cfquery>
<!-- Set the local variables -->

<cfset tripName = '#TripQuery.tripName#'>
<cfset eventType = #TripQuery.eventType#>

<cfset tripDescription =
TripQuery.tripDescription#'>
<cfset tripLocation = '#TripQuery.tripLocation#'>
<cfset departureDate =
DateFormat(#TripQuery.departureDate#,"mm/dd/yyyy")>
<cfset returnDate =
DateFormat(#TripQuery.returnDate#,"mm/dd/yyyy")>
...
<cfelse>
<cfset tripName = ''>
<cfset eventType = ''>
...
</cfif>

The ColdFusion function
IsDefined determines whether an
ID argument was passed as part of
the invoking URL.

The ID argument is passed when
TripEdit is invoked when the Edit
button is clicked on the main page.

When an ID is passed, it is used in
the WHERE clause of the SQL
SELECT statement to retrieve the
information about the current trip.
The program then instantiates local
variables from the results of the
SQL query.

ColdFusion DateFormat function
formats the date fields.

If TripEdit is called to add a new trip,
then there is no ID passed as a URL
argument. In this case, the local
variables are instantiated to blank.
Completing the Trip Maintenance application 139

3 Insert the following code just before the last line:
<!--- EDIT BUTTON --->

<cfelseif IsDefined("Form.btnEdit")>
<cflocation url="tripedit.cfm?ID=#Form.RecordID#">

<!--- ADD BUTTON --->
<cfelseif IsDefined("Form.btnAdd")>

<cflocation url="tripedit.cfm">
</cfif>

4 Save maintenanceaction.cfm.

5 Open tripedit4.cfm in the solutions directory in your editor.

6 Open the file initvariables.txt from the solutions directory.

7 Copy the contents of the initvariables.txt and paste it before the <HTML> tag in the
tripedit4.cfm page.

8 Save the file as tripedit.cfm in the my_app directory.

9 Test update logic by opening the tripdetail.cfm page in your browser and doing the
following tasks:

a Click the Edit button.

b Double the price of the current trip.

c Click Save.

The ColdFusion cfupdate works well for updating a single record. To update several
records in a single query, you must use the SQL UPDATE statement in conjuction with
cfquery.

SQL Update
The SQL UPDATE statement updates or changes rows in a relational table. The syntax
of the UPDATE statement is as follows:

UPDATE table_name SET column_name = new_value
WHERE column_name = some_value

Consider a database table named Clients that contains information about people in the
following rows:

PersonID LastName FirstName Age

1 Green Tom 12

2 Wall Peter 42

3 Madigan Jess 20
140 Lesson 6 Adding and Updating SQL Data

After the following SQL statement executes:

UPDATE Clients SET LastName = ’Pitt’
WHERE ID = 3

the table contains the following rows:

Update several rows

The UPDATE statement updates all rows that meet the criteria found in the WHERE
clause. If there is no WHERE clause, every row of the table is updated. After the
following SQL statement executes:

UPDATE Clients SET Age = Age + 1
WHERE ID = 3

the table contains the following rows:

Updating multiple records
The cfupdate statement works well when you want to update the current record within
a cfquery. Alternatively, you can update several rows within a table by issuing a single
query using cfquery and the SQL UPDATE statement. For example, if the base cost of
all trips increased by 5%, you could issue the following query:

<!-- Routine to increase trip base Cost by 5% -->
<cfquery name="TripQuery" dataSource="CompassTravel">
 UPDATE Trips SET baseCost = baseCost * 1.05
</cfquery>

Exercise: using SQL UPDATE with cfquery

In this exercise, you will develop a page to increase the price of every trip by 10%. This
page runs only once and is not part of the Trips Maintenance application. This exercise
shows how to update many database rows using a single SQL UPDATE statement and
the ColdFusion cfquery tag.

To update multiple database rows using SQL UPDATE with cfquery:

1 In an editor, open a new page and save it as priceincrease.cfm in the my_app
directory.

2 Remove any lines of code that your editor added.

PersonID LastName FirstName Age

1 Green Tom 12

2 Wall Peter 42

3 Pitt Jess 20

PersonID LastName FirstName Age

1 Tom Green 12

2 Peter Green 42

3 Pitt Jess 21
Completing the Trip Maintenance application 141

3 Add the following code:
<!---Routine to increase trip price by 10% --->
<cfquery name="TripQuery" dataSource="CompassTravel">
 UPDATE trips SET price = price * 1.1
</cfquery>
<cfoutput> New prices are now in effect.</cfoutput>

4 Save the page then test the page by doing the following tasks:

a Use the Trip Maintenance application to take note of the price of any trip by
viewing tripdetail.cfm in a browser.

b Test by opening the priceincrease.cfmpage in your browser. This page
automatically updates the prices in the trips table.

c Use the Trip Maintenance application to verify that the query successfully
increased the price of the trip by 10%. To do this, navigate to the tripdetail.cfm
and locate the trip you noted in step 4a. The price of this trip is now 10% higher.

Summary
In this lesson you used the cfinsert and cfupdate tags to add and update data to a
SQL table. You also have used the SQL UPDATE statement in conjuction with the
cfquery tag to effect a trip price increase for all rows in the Trips table.

You have completed the Getting Started tutorial. You should understand how you can
combine CFML and SQL to develop powerful applications. When compared with
traditional development methods, ColdFusion helps speed the development in hand
crafting a database solution like the one in this tutorial. Remarkably, however, depending
on the editor or IDE that you use to develop applications, much of the work in this
tutorial can be autogenerated using built-in wizards, which simplifies the development
process even more.
142 Lesson 6 Adding and Updating SQL Data

INDEX
A

action page, defined 26
application. See tutorial

C

cfform, defined 99
cfif, defined 59
cfinput, defined 99
cfinsert, defined 129
cflocation, defined 119
CFML

basics 13–28
building applications 9–10
commenting code 28
elements 16–21
expressions, described 21–24
functions 17
operators 23
SQL 33
syntax 9
tags, defined 16
variables 19

cfoutput, defined 14, 59
cfquery, defined 59
cfselect, defined 99
cfset, defined 59
cfupdate, defined 129
ColdFusion MX

Administrator 10
application server 9
components 8
configuration, described 35–45
described 8–10
introduction 3–11
markup language. See CFML
using with Macromedia Flash

MX 11

ColdFusion MX Administrator
accessing 37
debugging options 40
described 10

ColdFusion pages
browsing 15
creating 14
described 14–16
saving 15

comment tag, defined 28
conditional processing 25–26

D

data source, defined 33
data sources, supported 9
database

CFML tags 33
data types 53
designing 53
establishing table

relationships 54
fields 30
file connection 37
fundamentals, described 29–33
primary key 54
records 30
relational 30
tables 30
understanding 30

DateFormat function, defined 14,
81

debugging information, remote
clients 42

debugging options, enabling 41
debugging settings,

described 40–42

development tools
described 10, 43–45
Macromedia Dreamweaver

MX 43
Macromedia HomeSite+ 43

DollarFormat function, defined 81

E

editors, supported 14
e-mail, defined 4
expressions

building 21
character case 22
defined 21
denoting functions or

variables 22
literal values 23
operators 23
pound signs 22
quotation marks 23

F

FileExists function, defined 99
form page, defined 26
form processing, defined 26–27
FTP, defined 4
functions

DateFormat 14, 81
defined 17–19
DollarFormat 81
FileExists 99
isdefined 81
nesting 18
Now 14
operation on values 17
pound signs 18
PreserveSingleQuotes 59
143

syntax 18
URLEncodedFormat 81

H

HTML, defined 6

I

Internet
applications 4
defined 4

intranet
application 5
defined 5

IsDefined function, defined 81

J

JavaScript, described 6

M

Macromedia ColdFusion MX. See
ColdFusion MX

Macromedia Dreamweaver MX
configuring 45
defined 43

Macromedia Flash MX 11
Macromedia HomeSite+,

configuring 45
Microsoft Access, configuration 37

N

NFS, defined 4
Now function, defined 14

O

operators 23–24

P

PointBase, configuration 38
PreserveSingleQuotes function,

defined 59
primary key, defined 54

Q

query
building 66
results, displaying 65
search operators 70
variables 91

R

relational database, defined 30

S

sample application. See tutorial
search

capability, developing 69
results page, building 73

SQL
commands 32
data source 33
described 32–33
INSERTstatement 130
ORDER BY 64
security risks 88
SELECTstatement 62
WHERE clause 63
writing statements 33

T

tags
attributes 17
cfform 99
cfif 59
cfinput 99
cfinsert 129
cflocation 119
cfoutput 59
cfquery 59
cfselect 99
cfset 59
cfupdate 129
defined 16–17
syntax 16

Telnet, defined 4
tutorial

adding and updating SQL
data 129–142

application business rules 103
application defined 55
application page flow 120
application requirements 51
creating main application

page 81–98
data requirements 52
database configuration 37
database design 53
enforcing business rules 99–117
file structure, described 36
implementing browsing and

maintenance
functions 119–128

linking pages 125
preparing 49–57

requirements 57
validating trip photo 115
working directories 56

U

URL structure, defined 119
URLEncodedFormat function,

defined 81
URLs, described 7

V

variables
creating 19
defined 19–21
displaying output 20
naming 19
query 91
scope 20

W

web application servers,
described 7–8

web browsers, defined 6
web pages, defined 5
web server, described 5
web servers, defined 5
WWW, defined 4
144 Index

	Getting Started Building ColdFusion MX Applications
	Contents
	About This Book
	Developer resources
	About Macromedia ColdFusion MX documentation
	Printed and online documentation set
	Viewing online documentation

	Getting answers
	Contacting Macromedia

	Part I Welcome to ColdFusion
	Introducing ColdFusion MX
	The Internet and related technologies
	The Internet
	Intranet applications
	Web servers
	Web pages
	Web browsers
	URLs
	Understanding web application servers

	What is ColdFusion MX?
	The ColdFusion application server
	The ColdFusion Markup Language
	The ColdFusion MX Administrator

	Using ColdFusion MX with Macromedia Flash MX

	CFML Basics
	Working with ColdFusion pages
	Creating a ColdFusion page

	Understanding CFML elements
	Tags
	Functions
	Variables
	Creating variables with the cfset tag
	Displaying variable output

	Working with CFML expressions
	Building expressions

	Understanding conditional processing
	Processing form data
	Form processing

	Commenting your code

	Database Fundamentals
	Understanding database basics
	What is a relational database?
	Understanding relational tables

	About SQL
	Using SQL to interact with a database

	Using SQL with ColdFusion
	About data sources
	Writing SQL and CFML statements to interact with a data source
	CFML tags that interact with a database

	Configuring Your Development Environment
	Verifying the tutorial file structure
	Configuring database connection and debugging options
	Configuring the connection to the sample database file
	Enabling debugging options

	Macromedia development environment tools
	The Dreamweaver MX environment
	Configuring Dreamweaver MX for ColdFusion development
	Configuring HomeSite+ for ColdFusion development

	Part II Building a ColdFusion Application
	Preparing to Build the Sample Application
	Application development steps
	Determining the application functional requirements
	Determining the data requirements
	Designing the database for your application
	Developing the sample application
	How to proceed

	Writing Your First ColdFusion Application
	Creating your first ColdFusion application
	Application development steps

	Using a web page to list trips
	Converting to a dynamic web page
	Using SQL with cfquery to dynamically retrieve information
	Creating a dynamic web page

	Developing a search capability
	Designing the search criteria page
	Building the Search Results page
	Completing the Trip Search Results page

	Summary
	In the next lesson

	Creating a Main Application Page
	Enhancing the Trip Maintenance application
	Showing additional trip details
	Avoiding the potential security risk when using dynamic SQL
	Linking the Search Results page to the Trip Detail page
	Enhancing the look of the search results and detail pages
	Creating the main application page from the Trip Detail page
	Adding navigation buttons to browse database
	Adding database maintenance buttons

	Summary
	In the next lesson

	Validating Data to Enforce Business Rules
	Enhancing the Trip Maintenance application
	Using an HTML form to collect data
	Developing code to validate data and enforce business rules
	Validating data using a server-side action page
	Validating data on the client using ColdFusion form tags
	Using cfselect tag to present valid event types
	Using other client-side script to reduce edits on the server
	Validating the existence of the trip photo file

	Summary
	In the next lesson

	Implementing the Browsing and Maintenance Database Functions
	Enhancing the Trip Maintenance application
	Application development steps
	Using dynamic SQL to browse (navigate) the Trips table
	Building the maintenance action page
	Linking the Trip Detail page to the Trip Search page

	Summary
	In the next lesson

	Adding and Updating SQL Data
	Completing the Trip Maintenance application
	Writing code to save new trips to the database
	Updating a SQL row using cfupdate
	Linking the Trip Edit page to the main page
	SQL Update
	Updating multiple records
	Summary

	Index

