macromedia’
COLDFUSION’

Ni2><

Developing ColdFusion MX Applications
with CFML

Trademarks

Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver, Authorware,
Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage Designer, Backstage
Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, ColdFusion, Design in Motion, Director, Director
Multimedia Studio, Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000, Extreme 3D, Fireworks,
Flash, Fontographer, FreeHand, FreeHand Graphics Studio, Generator, Generator Developer's Studio, Generator Dynamic Graphics
Server, JRun, Knowledge Objects, Knowledge Stream, Knowledge Track, Lingo, Live Effects, Macromedia, Macromedia M Logo &
Design, Macromedia Flash, Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker, Object Authoring, Power
Applets, Priority Access, Roundtrip HTML, Scriptlets, SoundEdit, ShockRave, Shockmachine, Shockwave, Shockwave Remote,
Shockwave Internet Studio, Showcase, Tools to Power Your Ideas, Universal Media, Virtuoso, Web Design 101, Whirlwind and Xtra
are trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions including internationally. Other
product names, logos, designs, titles, words or phrases mentioned within this publication may be trademarks, servicemarks, or
tradenames of Macromedia, Inc. or other entities and may be registered in certain jurisdictions including internationally.

This product includes code licensed from RSA Data Security.

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not responsible for
the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your own risk. Macromedia
provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia endorses or accepts any
responsibility for the content on those third-party sites.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE ENCLOSED
COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER
RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

Copyright © 1999-2002 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, translated,
or converted to any electronic or machine-readable form in whole or in part without prior written approval of Macromedia, Inc.
Part Number ZCF60M800

Acknowledgments
Project Management: Stephen M. Gilson

Writing: Hal Lichtin, Stephen M. Gilson, Michael Stillman, David Golden
Editing: Linda Adler, Noreen Maher

First Edition: May 2002

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS

ABOUT THIS BOOK . . s s s st s s s nannnnsnannn==a==s XXI

Using this book xxii
Book structure and contents. xxii
Approaches to using thisbook xxii

DeVElOPEr [ESOULCES v vt vt ettt XXiv

About Macromedia ColdFusion MX documentation.ovvueieiunnnneao.n. XXV
Printed and online documentation set it XXV
Viewing online documentation. xxvi

GELUNG ANSWELS .+« . vttt ettt ettt ettt xxvi

Contacting Macromedia XXVi

CHAPTER 1 Introduction to ColdFusion MX 1

About Internet applications and web application servers oo o 2
About web pages and Internet applications. oL 2
About web application servers. 2

About ColdFusion MXt 4
The ColdFusion scripting environmentt 4
ColdFusion Markup Language. o o ool 4
ColdFusion application SEIVICES v vvvvvvtt e 6
The ColdFusion MX Administrator.ttt 6

Using ColdFusion MX with Macromedia Flash MX o o ool 7

About J2EE and the ColdFusion architecture i, 8
About ColdFusion and the J2EE platform i, 8
J2EE infrastructure services and J2EE application server. o ... 8

ColdFusion features described in thisbook o ... 10

CHAPTER 2 Elementsof CFML............ ..t nnnn 15
INtrodUCHION . .\ttt ettt et et e et e e e e e e e 16
CRaracter CaSE . o v vt vttt ettt e e e e 16
Tags . ot 17

Tag syntax 17
Built-in tags 17
CUSTOM TAZS « .+« o et ettt e ettt et e e e et e e e e 18

FUnCHOns. . . .o e 19

Built-in functions. oo vttt 19
User-defined functionsttt 19
EXPIessions e 21
CONSTANLS L . oottt ettt e e 21
Variableso 22
Variable scopes 22
DA EYPES -+ o et vttt e et e e e e 24
ColdFusion COMPONENTS . .+« v« v vttt ettt et e e ettt e et 25
CESCrIpt « o 26
Flow control 27
cfif, cfelseif, and cfelse. 27
cfswitch, cfcase, and cfdefaultcase. 28
cfloopand cfbreak 28
cfabortand cfexito 30
COMUMENTS. . . .\ttt ettt et et et ettt e 31
Special Characters.t 31
Reserved words 32
CHAPTER 3 Using ColdFusion Variables 33
Creating variables 34
Variable naming rules. 34
Variable characteriStics.o vttt 35
Data typesot 35
INUMDELS .« .ttt e 36
SUIIIES .« vttt 37
Booleans. 38
Date-Time valueso oottt e 39
Binary data type and Base64 encoding oo oo ool 40
Complex data tyPes . ..o oo v vttt 41
Using periods in variable references i i 45
Understanding variables and periods o o o oo ool 46
Creating variables with periods. o o i i i 47
Data tyPe COMVEISION . . . v vt ettt et e ettt e e e e e et e e e et 49
Operation-driven evaluation. o i i il 49
Conversion between typesttt e 49
Evaluation and type conversion issues.t 51
Examples of type conversion in expression evaluation. 54
ADOUL SCOPES . .« « oo ettt ettt ettt 55
SCOPE LYPES. o ettt et e e e e 55
Creating and using variables inscopeso oo ool 57
USINE SCOPES. .+« v ettt ettt e e e e et e e e 59
Ensuring variable existence i i i i i i 60
Testing for a variable’s existencet 60
Using thecfparamtag. 61
Validating data types 62
Using cfparam to validate the datatype o i i i 62
Passing variables to custom tagsand UDFs o o i il 64
Passing variables to CFML tagsand UDFs. oot 64
Passing variables t0 CEFX tagsottt 64

iv

Contents

CHAPTER 4 Using Expressions and Pound Signs. 65

EXPIessiOnsottt 66
OPErator TYPES . . oottt ettt ittt 66
Operator precedence and evaluation ordering. L. 69
Using functions as OPerators.uuuuuuuueeeeeeeeeeeeeeeeeeneeen... 69

Using pound SIGNS vvuvttt 71
Using pound signs in ColdFusion tag attribute values 71
Using pound signs in tagbodies. oo i i i i 72
Using pound signs in strings.ot 72
Nested pound signs e 73
Using pound signs in eXpressionsoouiiiiiiii i 74

Dynamic expressions and dynamic variables o L 74
About dynamicvariables. 74
About dynamic expressions and dynamic evaluation. 74
Dynamic variable naming without dynamic evaluation 75
Using dynamicevaluation o i il 77
Using the IIF function i 80
Example: a dynamic shoppingcart....... ... i i i i 82

CHAPTER 5 Using Arraysand Structures.c..... 87

ADOUL AITAYS .« .\t ettt e e 88
Basic array CoONCEPLs v it 88
About ColdFusion arrays vouutut ettt e 88

Basic array techniquesottt 90
Referencing array elements. i 90
Creating aIraysttt et 90
Adding elements to an arrayo ottt 92
Deleting elements from anarray. i 93
COPYING ALTAYS « « o oottt ettt ettt e 94

Populating arrays withdata i i i 95
Populating an array with the ArraySet function o L 95
Populating an array with the cflooptag oo ool 95
Populating an array from a QUELYv vttt 97

Array functionst 98

ADOUL SEIUCTULES .« . v v ettt et e et e e e e e e e e e e e e e 99
STUCTUIE MOTALION . ..\ v ittt ettt 99
Referencing complex structuresuuuiiiiiiiiiiiiiiiiii e 100

Creating and USING SIIUCTUIES.\ttt eeens 102
Creating SUTUCTUIES oottt ettt et e e ettt e ettt eas 102
Adding data elements to SETUCTULESo oo vttt ettt 102
Updating values in SErUCtUresouuuuuti e 102
Getting information about structures and keys.o oo o ool 103
COPYING STIUCTUIES . « . vt vttt ettt e e ettt e e e e e eas 105
Deleting structure elements and structurest 107
Looping through structures o i i i 107

Structure example e 109

Structure fUNCHONS u ittt 113

Contents v

CHAPTER 6 Extending ColdFusion Pages with

CFML Scripting i i ittt i i e ittt st e e nnnnnns 115
ADOUE CESCIIPT .« v vttt e et e e e e e 116
Comparing tagsand CFScripto o i i i 116
The CFScriptlanguage 118
Identifying CESCIIPL. . . . v v vttt e e 118
Variables.o 118
EXpressions. 118
SETALEMENTS « . o oottt ettt et 118
Statementblocks 119
COMMENTS . oottt ettt 119
Reserved words.t 120
Differences from JavaScriptottt 120
CFScript Imitationottt 120
CFScript functional equivalents to ColdFusiontags............................ 120
Using CESCript Statements. vttt 122
Using assignment statements and functionsueuuueuuuneeeneon. 122
Using conditional processing Statements.uuueueueeuueeneeennn.. 122
Using looping STAEMENESttt vttt ittt 124
Handling exceptionsouuuuuiii i 129
CFScriptexampleot 130
CHAPTER 7 Using Regular Expressions in Functions......... 133
About regular expressions. 134
Using ColdFusion regular expression functions 134
Basic regular expression syntax 135
Regular expression Syntax.eueuue e ettt 136
Using character Sets vuutt ettt 136
Finding repeating characters. i i i 137
Case sensitivity in regular expressions. o i il 138
Using subexpressionsuuuuuiuuiei e 138
Using special charactersttt 138
USINg €5Cape SEQUENCES. .« .« v vt vv et et ettt e 141
Using character classes 143
Using backreferences 144
Using backreferences in replacement strings o L 144
Onmitting subexpressions from backreferences. o o000 146
Returning matched subexpressions.o i i il i i 147
Specifying minimal matching. oo o o o oo 149
Regular expression examplesuuii e 152
Regular expressions in CEML. o 152
Types of regular expression technologies 154

PART Il Reusing CFMLCode.cvvvvevveecun... 195

CHAPTER 8 Reusing Code in ColdFusion Pages. 157
About reusable CEML elements.ovtn ittt e 158
Including pages with the cfinclude tag.o oo i il 158

Using thecfinclude tag.o 159

Vi

Contents

Recommended USEsottt 160

Calling user-defined functions. o i i oo 161
Calling UDFs. . ..ot 161
Recommended usesot 161
For more information.ouu ittt 161

Using custom CEML tagsottt e 162
Calling custom CEML tags.o vttt e 162
Recommended Usesot 163
For more information. i 163

Using CEX tags . « v v oot ettt et e e e 164
Calling CEX tags . .« v v vvv ettt ettt et 164
Recommended USES\ v vttt e 164
For more information.t e 164

Using ColdFusion components, 165
Creating and using ColdFusion components 165
Recommended useso 165
For more information.ouu ittt 165

Selecting among ColdFusion code reuse methods 166

CHAPTER 9 Writing and Calling User-Defined Functions 167

About user-defined functions., ... 168

Calling user-defined functions. o i i i ool 169

Creating user-defined functions. i 169
Creating functions using CFScripto 169
Creating functions USING tags « « .« « v« v vttt vttt ettt 170
Rules for function definitions.oovti i 170
Defining functions in CEScript i i 174
Defining functions using the cffunction tag i 177

Calling functions and using variables. o o oo ool 180
Passing argumEntsttt 180
Referencing caller variables. 180
Using function-only variables. o i i i 181
USING aIGUMENTS . ..ottt ettt ettt ettt 181

A User-defined function example.o oo 182
Defining the function using CFSeript o o ool 182
Defining the function using the cffunctiontag............. L 183

Using UDFs effectively 184
Using Application.cfm and function include files. o .. 184
Specifying the scope of a function. o o i i oo 184
Using the Request scope for static variables and constants 186
Using function names as function argumentsovueieeiieneoe .. 186
Handling query results using UDFso oo 187
Identifying and checking for UDFsot 188
Using the Evaluate function o i i i i i 188
Passing complex data e 189
USING FECUISION . . o o\ttt ettt et ettt ettt e it 190
Handlingerrors in UDFs o 191

Contents vii

CHAPTER 10 Creating and Using Custom CFML Tags........ 197

Creating CUSTOIM TAZS .« « .« .o vttt ettt et e e ettt e s 198
Creating and calling custom tags i i il 198
SeCUring CUSTOM TAZS .+« v v vttt et ettt et e et ettt 201
Accessing eXiSting CUSTOM TAZS « « « . v v vt e ettt e e ie e iee e iie e 201

Passing data to CUSLOM tags vvvvvt ittt 202
Passing values to and from custom tags.uuuuttit e 202
Using tag attributes SUMMAryuutttt e 203
Custom tag example with ateributes oo o oo 204
Passing custom tag attributes using CFML structures.couuuuunne... 205

Managing CUSTOM TSo vttt et ettt et e 207
Securing CUSTOIM TAS . . . ot vttt ettt et ettt e 207
Encoding custom tags.ttt 207

Executing custom tagsottt 208
Accessing tag instance data 208
Handlingend tags 208
Processingbody text. 210
Terminating tag eXeCUTION « .« ..ot vttt ettt ettt e et e 211

INEStING CUSTOM TAZS .+« + « v v ettt et ettt et et 212
Passing data between nested custom tags 212
Variable scopes and special variables. i 213
High-level dataexchange o o il 213

CHAPTER 11 Building and Using ColdFusion Components 217

About ColdFusion cCOmPONEnts. . . .« ovvuut ettt 218
Applying design patterns to component development. 218
Building ColdFusion componentsoooiiiiiiiniiiiinnneinnnn.. 219
Defining componentmethods o o i i il 220
Interacting with componentmethodso ool 222
Invoking component methods 222
Passing parameters to component methods. o oo oL 226
Returning values from component methods. oo oL 232
Using advanced ColdFusion component functionality., 234
Building secure ColdFusion components 234
Using component packages.ttt 237
Using component inheritance. o o o oo 239
Using component metadataooiuiiiiiiiiiii 240
CHAPTER 12 Building Custom CFXAPITags. 243
What are CEX tags?. . .« v oottt et et e e 244
Before you begin developing CEX tagsinJava..............o oo, 245
Sample Java CEX tags. . . . v v v v vttt ettt e 245
Setting up your development environment to develop CFX tagsinJava............. 245
Customizing and configuring Javat 246
WritingaJava CEFXtago i 247
Calling the CFX tag from a ColdFusion page., 247
Processing reqUESES oo v vttt e 248
Loading Java CEX Classes v vuvuttt e 250
Automaticclassreloading o 250
Life cycle of Java CEX tagsttt 251

Viii Contents

ZipBrowser example 251

Approaches to debugging Java CEX tagso i 253
Outputting debugging information i 253
DebugginginaJavalDE o o o i i 253
Using the debugging classes 254

Developing CEX tags i Gt v v v v vttt 256
Sample Ct+ CEXGagS . .. v vttt 256
Setting up your C++ development environment. 256
Compiling C++ CEX tags vvvttttt e 256
Locating your C++ library fileson Unixo oo 256
Implementing Cu+ CEX €ags . .+« v vttt e 256
Debugging Co+ CEX tags . ..o vttt 257
Registering CEX tagsoivui i i 257

PART lll Developing CFML Applications259

CHAPTER 13 Designing and Optimizing a ColdFusion

Applicationt i ittt e i i e 261
About applications. 262
Elements of a ColdFusion applicationeeuuuuuuneneneunnenneen. 262

The application framework. 262
Application-level settings and functions oo L 263
Reusable application elements i 264
Shared variables 264
Application security and user identification L ool 264
Mapping an application. 265
Processing the Application.cfm and OnRequestEnd.cfm pages. 265
Defining the directory structure o i 266
Creating the Application.cfm page.ttt 268
Naming the application o 268
Setting the client, application, and session variables options. 268
Defining page processing SEtiigs . « « .« ot v vvvvvttee ettt eteeeteeeeeeeeeeeenn. 269
Setting application default variables and constants 269
Processing logins.ottt 269
Handlingerrors 270
Example: an Application.cfmpage o i i 270
Optimizing ColdFusion applications., 272
Caching ColdFusion pages that change infrequently 272
Caching parts of ColdFusion pages.t 274
Optimizing database use. 277
Providing visual feedback to theuser ool 280

CHAPTER 14 HandlingErrors.ciiiiiiiiinannnns 281
About error handling in ColdFusiono o o oo 282
Understanding errOrs. . ..o oo vttt ettt et 283

About error causes and FeCOVEIY . . . oottt et 283
ColdFUusion error yPes. . . .« v v v v vttt ettt 284
About ColdFusion eXceptions.ottt 284
How ColdFusion handles errors. 287

Contents ix

Error messages and the standard error format i ool 289

Determining error-handling strategies o o oot 291
Handling missing template errors. 291
Handling form field validationerrors o o ool 291
Handling compiler exceptionsttt 291
Handling runtime exceptions ovvttiiiiiiii i 292

Specifying custom error messages with cferror o oL 293
Specifying a custom error page 293
Creating an error application pagettt 294

Logging errors with thecflogtag i il 297

Handling runtime exceptions with ColdFusion tags., 299
Exception-handling tags 299
Using cftryand cfcatch tags i 299
Using cftry: an example e 304
Using thecfthrowtag. o i 308
Using the cfrethrow tag out e 309
Example: using nested tags, cfthrow, and cfrethrow o o ool 310

CHAPTER 15 Using Persistent Data and Locking 315

About persistent scope variables. 316
ColdFusion persistent variables and ColdFusion structures. 317
ColdFusion persistent variable issueso i i il 317

Managing the clientstate.o 318
About client and session variables. 319
Maintaining clientidentity. 320

Configuring and using client variables. o o o o ool 323
Enabling client variables. 323
Using clientvariableso 325

Configuring and using session variables. o oo oo ool 328
W hat 15 @ SESSI0ML . & o vt vttt e et e e e e 328
Configuring and enabling session variables. o o o ool 329
Storing session data in session variables. oo o o ool 330
Standard session variables. 330
Getting a list of session variables. o o ool 331
Creating and deleting session variables o oo ool 331
Accessing and changing session variables. o o oo oL 331
Ending @ sessionttt 332

Configuring and using application variables. 333
Configuring and enabling application variables 333
Storing application data in application variables. o oo oo ool 333
Using application variables.o 334

Using server variables. o 335

Locking code with cflock.o 336
Sample locking scenarios o i il i 336
Using the cflock tag with write-once variables 338
Using the cflock tag 338
Considering lock granularity. o 341
Nesting locks and avoiding deadlocks.o 341

Examples of cflock. 343

X

Contents

CHAPTER 16 Securing Applications 347

ColdFusion security featuresoouiiiiiiiiiiiiiiiiiiiiiii . 348
ADOUL [ESOULCE SECULILY « « « o vt ettt ettt ettt e et et et e e e e 349
ADOUE USET SECULITY -+« v v vttt et ettt e et et e e e et e 351
Security tagsand functions. o o o o o 353
About web server authentication and application authentication 353
Controlling ColdFusion login behavior oo o i L. 354
The cflogin SEFUCTULEt 356
Using ColdFusion security without cookies o oo .. 356
A basic authentication security scenario ot 356
An application authentication security scenariooiiiiiii.. 357
Implementing USer SECULITY .« . .. v vttt vttt ettt e e e 360
Basic authentication user security example o oo ool 360
Application-based user security example.o oo oo 362
Using application-based security with a browser’s login dialog 368
Using an LDAP Directory for security information 369
CHAPTER 17 Developing Globalized Applications. 373
Introduction to globalization. 374
Defining globalization 374
Importance of globalization ColdFusion applications.oouuuoo.. 375
How ColdFusion supports globalization., 375
Character setsand locales o i 375
About character encodings. 377
The Unicode character encodingo 377
Locales. . ..t 378
Setting the locale 378
Processing a request in ColdFusion o i il 379
Determining the character set of a ColdFusion page. 379
Determining the character set of serveroutput.o oo oL 380
Tags and functions for globalizing 382
Using tags for globalizing applicationso, 382
Using functions for globalizing applicationscoieiiieeeon. 382
Handling data in ColdFusionoiuiiiiiiiiiiiiiiiii... 385
Input data from URLs and HTML forms.vvuttttteeenn 385
Reading and writing filedata i 387
Databases oot 387
E-mail .o 387
HT TP o 387
LDAP. . 388
WD DX 388
COM i 388
CORBA . .. 388
Searching and indexing. 388

CHAPTER 18 Debugging and Troubleshooting Applications .. .389

Configuring debugging in the ColdFusion MX Administrator. 390
Debugging Settings Page vvvvvtittttt e 390
Debugging IP addresses pagettt 392

Contents Xi

Using debugging information from browser pages............ 393

General debugging information oo o oo ool 394
Execution Time 395
Database ACHVITY « « ..o vttt ettt e 397
Exceptions 399
Trace POIMLS . o o v et ettt et e et e e e e e 399
Scope variables 400
Using the dockable.cfm outputformat......... oo ool 400
Controlling debugging information in CEML. o i, 402
Generating debugging information for an individual query 402
Controlling debugging output with the cfsetting tag 402
Using the IsDebugMode function to run code selectively. 403
Using the cftrace tag to trace eXecutionoouiiiiiiiiiinnieeaaa .. 404
Aboutthecftracetag 404
USING traCing . . . oottt ettt 406
Calling the cftrace tag. oot 407
Using the Code Compatibility Analyzer.o o it 409
Troubleshooting common problems 410
CEFML SYNEAX €ITOLS « « . o v v e et ete e e et et e e e et e e ettt 410
Data source access and QUETIES « .« .o v vttt 411
HTTP/URL. . .o e e e 411

PART IV Accessing and UsingData.c..... 413

CHAPTER 19 Introduction to Databasesand SQL............. 415
Whatis a database?t e 416
Using multiple database tables o i i i 417
Database Permissionsttt 418
Commits, rollbacks, and transactions vttt e 418
Database design guidelines i 419
Using SQL. . ..o 420
SQL example . . oo oot 420
Basic SQL syntax elements.t 421
Reading data fromadatabase. i il 422
Modifyingadatabase 425
Writing queries using an editor 428
Writing queries using Dreamweaver MXo o oo 428
Writing queries using ColdFusion Studio and Macromedia HomeSite+. 430
CHAPTER 20 Accessing and RetrievingData............... 433
Working with dynamicdata.o i 434
Retrieving data.v v 435
The cfquery tag 435
The cfquery tag syntaxt 435
Building queries 436
Outputting query data.ttt 438
Query output notes and considerations i 439
Getting information about query results o i i i il 441
Query variable notes and considerations. il i 442

Xii

Contents

Enhancing security with cfqueryparam o oot 443

About query String Parameters 443
Using cfqueryparamttt e 443
CHAPTER 21 Updating YourDatabase 445
About updating yourdatabase 446
Inserting data.ttt 446
Creatingan HTML insert formt .. 446
Data entry form notes and considerations.uuuuueeeieuuieenea.. 448
Creating an action page to insertdata.uuuiuiine 448
Updating datavuu 452
Creatingan update form. i 452
Creating an action page toupdatedata. i i 455
Deleting data.t e 459
Deleting asingle record 459
Deleting multiple records. oo 460
CHAPTER 22 UsingQueryofQueries.c0uu... 461
ADOUE TECOTA SELS . .+ o v v vttt et e 462
Referencing queries as objects. i i 462
Creating a record SEt. . ..ot vv vttt 462
Creatingarecord set witha function oo i i i il il 463
About Query of QUELIESo vttt 465
Benefits of Query of QUeriesottt 465
Performing a Query of Queries. 465
Query of Queries user guide 474
Using dot NOTAtION\ u e 474
USING JOINS . . o v v ettt ettt e e e e e 474
USING UNIONS .« oottt ettt ettt e ettt e 474
Using conditional operatorst 477
Using aggregate fUNCLiONS.ttt 480
Using group by and having expressions oo, 481
Using ORDERBY clauses 481
Using allases. . ..ottt 482
Handling null values. oo i i i 483
Escaping reserved keywords o i 483
BNF for Query of QUETIES. « « « v vttt et et e 486
CHAPTER 23 Managing LDAP Directories 489
ADOUt LDAD . . oottt 490
The LDAP information SIrUCTUIEo v vvut ettt ettt e e 492
Bty o 492
Attribute. 492
Distinguished name (DN) i 493
Schema. e 493
Using LDAP with ColdFusion. i i, 495
Querying an LDAP directory.o ooii i 496
S0P« e et e 496
Search filter 496

Contents xiii

Getting all the attributes of anentry. o o oo oo 498

Example: querying an LDAP directory.ouuuiiiiiiiieinnean. 498
Updating an LDAP directory.vuuuuuti i 503
Adding adirectoryentry. 503
Deleting a directory entry. ...ttt 509
Updating a directory entryttt 510
Adding and deleting attributes of a directory entry. oo o oL 512
Changing adirectoryentry’s DN 513
Advanced tOPICS. . . v vttt 514
Specifying an attribute that includes a comma or semicolon. 514
Using cfldap output vvv v 514
Viewing a directory schema 514
Referralso oo 519
Managing LDAP securityt 520
CHAPTER 24 Building a SearchiInterface 521
ADOUE VEIILY « v vttt ettt e 522
Using Verity with ColdFusiono o i i i 522
Advantages of using Verity oottt e 523
Supported file types 523
Support for international languages oo o ool 526
Creating a search tool for ColdFusion applications 528
Creating a collection with the ColdFusion MX Administrator 528
About indexinga collection o 530
Indexing and building a search interface with the Verity Wizard 530
Creating a ColdFusion search tool programmatically 535
Using the cfsearch tagt 542
Working with record setso 545
Indexing database record sets i i i 545
Indexing cfldap query results o o i i 549
Indexing cfpop query results. 550
Using database-directed indexing o i i il 551
CHAPTER 25 Using Verity Search Expressions 553
About Verity qQUEIY tyPes . . . oo v vttt ettt e e e e e e e e 554
Using simple QUETIESttt 555
Stemming in simple queries 555
Preventing StEMMINGo oottt 557
Using explicit QUETIES. . . . oot vttt et 558
Using AND, OR,and NOT i 558
Using wildcards and special characters o oo ool 559
Composing search expressions.oo i i i il 562
Case SENSILIVITY . . . o oottt e e e 562
Prefix and infix notation.t i 562
Commas N eXPIESSIONS. v v v ittt ettt et e 562
Precedence rules.ovuiii i 563
Delimiters in eXPressionsouuuueeeeeeeieteeeeeneeeneeneeen... 563
Operators and modifiers. 563
Refining your searches with zonesand fields 573

Xiv Contents

PARTV Requesting and Presenting Information...............577

CHAPTER 26 Retrieving and FormattingData 579
Using forms to specify thedatatoretrieve oo o ool 580
HTML fOrm ag SYNtaXo vvvettttt ettt ettt 580
Form controls. 581
Form notes and considerations.ottt 584
Working with action pages. 585
Processing form variables on action pages. i 585
Dynamically generating SQL statementscoouiiniiiiiiinneeeen.. 585
Creating aCtion PaEeS oot vttt ettt et 586
Testing for a variable's existencettt 587
Requiring users to enter values in form fields o o o ool 588
Form variable notes and considerations i i 588
Working with queriesand data 589
Using HTML tables to display query results. oo, 589
Formatting individual dataitems 590
Building flexible search interfaces. o i i i i i 591
Returning results to theuser oo i i 593
Handlingno query results i i 593
Returning results incrementally o oo o o oo 594
Dynamically populating listboxes i i 597
Creating dynamic check boxes and multiple-selection
LSt boXes. « o oo et 599
Check Doxes . . . oo 599
Multiple selection listso oot 601
Validating form field datatypeso o oo oo 603
CHAPTER 27 Building DynamicForms 607
Creating forms with the cfformtag oo oo ool 608
Using HTML and cfform. 608
The cfform controlso 608
Preserving input data with preservedata o oo ool 609
Browser considerations.ttt 610
Building tree controls with cftree. o i i 611
Grouping output fromaquery.......... i i oo 612
The cftree form variables 613
Inputvalidation 614
Structuring tree controls. 614
Image names inacftree 616
Embedding URLsinacftreeooiiuniniiiii i 617
Specifying the treeiteminthe URLottt 618
Building drop-down list boxesvvuuu e 619
Building text input boxes.ttt 620
Building slider bar controls 621
Creating data grids with efgrid. o o i 622
Working with a data grid and entering datao il 622
Creatingan editable grid 624

Contents XV

Embedding Java applets. 633

Registering a Java applet. 633
Using cfapplet to embed anapplet i 635
Handling form variables from anapplet............ oo 636
Input validation with cfform controls i 637
Validating with regular expressions.uuuuuiiiiia 637
Input validation with JavaScript. oo o o 642
Handling failed validation 642
Example: validating an e-mail address. o o ool 643
CHAPTER 28 Charting and GraphingData 645
Creatinga chart. 646
CRart [yPes. . o o v v ettt 646
Creatingabasicchart........o i i i i 647
Administering charts e 649
Charting data. 650
Charting a QUETY. v et 650
Charting individual data pointso i i 653
Combining a query and data pointsoviiiiii i 654
Charting multiple data collections i i i 654
Writing a chart to a variable 656
Controlling chart appearance. i 658
Common chart characteristicsot 658
Setting x-axis and y-axis characteristics o oo ool 660
Creatingabarchart i 661
Setting pie chart characteristics. o i il i 662
Creatinganarea chart. 664
Setting curve chart characteristics o o o oo 666
Linking charts to URLs 667
Dynamically linking fromapiechart.........o o ool 667
Linking to JavaScript froma piechart i it 670
CHAPTER 29 Using the Flash Remoting Service 673
About using the Flash Remoting service with ColdFusion 674
Planning your Flash application i 674
Using the Flash Remoting service with ColdFusion pages 675
Using Flash with ColdFusion components.o, 680
Using the Flash Remoting service with server-side ActionSeript. 682
Using the Flash Remoting service with ColdFusion Java objects 683
Handling errors with ColdFusionand Flash oo oo o .. 684

PART VI Using Web Elements and External Objects685

CHAPTER 30 Using XML andWDDX............cciiuucun.. 687
About XML and ColdFusion.ottt 688
The XML document objectttt 689

Asimple XML document.oo it 689
BasiC VIEW . . oo e 690

XVi

Contents

DOM NOde VIEW . . . ottt e e e e e 690

XML dOCUMENT SEFUCTULES « « + + « v v e v ettt e e e ettt e e e e et e e et een e e e 691
ColdFusion XML tag and functionso, 694
Using an XML objectuuuuu 696

Referencing the contents of an XML object 696

Assigning data to an XML objecto oo v ve it 697
Creating and saving an XML document object i, 698

Creating a new XML document object using the cfxmltag. 698

Creating a new XML document object using the XmINew function. 698

Creating an XML document object from existing XML 699

Saving and exporting an XML document object. 699
Modifying a ColdFusion XML objectvvviiiiiiiiiiiiiiiiiii .. 700

Functions for XML object management., 700

Treating elements with the same name asanarrayo, 701

XML document object management referenceo 702

Adding, deleting, and modifying XML elementscoiiiiiinn... 703

Using XML and ColdFusion queriescoviiiiiiiiiiiiiien... 708
Transforming documents with XSLT 710
Extracting datawith XPath 711
Example: using XML in a ColdFusion application., 712
Moving complex data across the web with WDDXot 717

Uses of WDDX . .. u ottt e 717

How WDDX WOIKSt 718
Using WDDX . ..o 722

Using thecfwddxtag 722

Validating WDDXdata i 722

Using JavaScript objects vvuu e 723

Converting CFML data to a JavaScript object, 723

Transferring data from the browser to theserver. 723

Storing complex data in a stringi e 726

CHAPTER 31 UsingWeb Services.iiiiiiiiiinnn 729
WED SEIVICES . v v vt ettt e e e 730

Accessingawebservice. 730

Basic web service concepts 731
Working with WSDLfiles.............oo i i i 733

Creatinga WSDLfile.ttt e 733

Viewing a WSDL file using Dreamweaver MX.ooii. ... 733

Readinga WSDL file ouuut e 734
Consuming web Servicesuuuuuii 736

About the examples in thissection i i 736

Passing parameters to aweb service. L i 736

Handling return values fromawebservice oo i ool 737

Using cfinvoke to consume aweb service o o oL 737

Using CFScript to consume a web service.o oo o i il 739

Calling web services froma Flash client o o o o ool 740

Catching errors when consuming web servicesot 740

Handling inout and out parametersoviieiiinne et 740

Configuring web services in the ColdFusion Administrator 741

Data conversions between ColdFusion and WSDL data types 741

Contents xvii

Consuming ColdFusion web services i 742

Publishing web services 744
Creating components forweb services o o o ool 744
Specifying data types of function arguments and return values 744
Producing WSDL fileso vttt 745
Using ColdFusion components to define data types for web services 748
Securing your web services i i i 749
Best practices for publishing web serviceso oo ool 752

Handling complex data types.o e 753
Consuming web services that use complex data types.oouuuuuenna.. 753
Publishing web services that use complex datatypes.............o .. 756

CHAPTER 32 Integrating J2EE and Java Elements in

CFML Applications ittt ittt st nn s nnnn 759
About ColdFusion, Java,and J2EE 760
About ColdFusion and client-side JavaScript and applets. 760
About ColdFusion and JSP. ot e 760
About ColdFusion and Servlets 761
About ColdFusion and Java objectsooiiiiiiii 761
Using JSP tags and tag libraries i 762
Using a JSP tagina ColdFusion page.o o it 762
Example: using the random tag library oo oo oo 763
Interoperating with JSP pagesand servlets. oo ool 764
Integrating JSP and servlets in a ColdFusion application 764
Examples: using JSPwith CEML i 766
Using Java ODJECtst 769
Using basic object techniques. o o i i 769
Creating and using a simple Javaclass. i 771
Java and ColdFusion data type conversionsc..oouiiiiiiiinneeen... 774
Handling Java eXceptions vvvuttttt e 776
Examples: using Javawith CEML. oo i i 777
CHAPTER 33 Integrating COM and CORBA Objects in
CFML Applicationsttt ittt it e e 785
About COMand CORBA. 786
AboUt objects . . .ot 786
About COMand DCOM ... 786
About CORBA. 786
Creating and using objects. i i 788
Creating objectst 788
USING PIOPEITIES . . o o v vttt ettt et e ettt e ittt 788
Callingmethods.o i 788
Calling nested objects. oo 789
Getting started with COM and DCOMt 790
COM ReqUITEMENTS. . . v vt v ettt ettt et i 790
Registering the object. 790
Finding the component ProgID and methods 790
Using the OLE/COM Object VieWer.ttt 791

XViii

Contents

Creating and using COM objectst 793

Connecting to COM objects 793
Setting properties and invoking methods oo oo ool 794
COM object considerationsottt 794
Getting started with CORBA e 797
Creating and using CORBA objects.t 797
Creating CORBA objects 797
Using CORBA objects in ColdFusion o o .. 799
Handling exceptions. 804
CORBA example.ttt 805

PART VIl Using External Resourcesccvveevnuenn..807

CHAPTER 34 Sending and ReceivingE-Mail 809
Using ColdFusion with mail servers.ttt .. 810
Sending e-mail MESSAZES v v vt 811

Sending SMTP e-mail with cfmail o i i i 811
Sample uses of cfmail. 813
Sending form-based e-mail o 813
Sending query-based e-mail o o oo oo 813
Sending e-mail to multiple recipients o 814
Customizing e-mail for multiple recipients oo i 815
Using cfmailparam. 817
Attaching files toamessage. 817
Adding a custom header toamessage. i 817
Advanced sendingoptions. oo oo o oo 818
Sending mailas HTML 818
Error logging and undelivered messages o oo ool 818
Receiving e-mail messagesvvututete 819
USING CfPOP .« v v v et 819
The cfpop query variables. 820
Handling POP mail.o 821

CHAPTER 35 Interacting with Remote Servers.............. 829
About interacting with remote servers 830
Using cthetp to interact with the web.o o 830

Using the cthttp Getmethod 830
Creating a query object fromatextfile il 835
Using the cfhttp Post method 837
Performing file operations withefftp o 841

Caching connections across multiple pages.t 843

Connection actions and attributes o o o oo 844

CHAPTER 36 Managing Filesonthe Server 845
About file management 846
Using cffile 846

Uploading files.o 846

Moving, renaming, copying, and deleting server files 852

Reading, writing, and appending toatextfile. i i 852

Contents Xix

Using cfdireCtory e 856
Returning file information e 856
USING CRCOMUEIE . . . v v vttt 858
About MIME types . . oot 858
Changing the MIME content type with cfcontento ... 858

INDEX s s s s ssnnnsnnnnnnnnnnnnnnnnnnnnnnnn=s-863

XX

Contents

ABOUT THIS BOOK

Developing ColdFusion Applications provides the tools needed to develop Internet
applications using Macromedia ColdFusion MX. This book is intended for web
application programmers who are learning ColdFusion MX or wish to extended their
ColdFusion MX programming knowledge. It provides a solid grounding in the tools that
ColdFusion MX provides to develop web applications.

Because of the power and flexibility of ColdFusion MX, you can create many different
types of web applications of varying complexity. As you become more familiar with the

material presented in this manual, and begin to develop your own applications, you will
want to refer to CFML Reference for details about various tags and functions.

Contents

o Using this DOOKcoiiiiriiiiieiicincicncc e xxii
® DEVELOPEL TESOUITES ..vvuvenitenirienteteaietet ettt ettt et eb et b et ebe et s ebe st ebesaebe e XXIV
e About Macromedia ColdFusion MX documentation.........c.ccceeeeveeeueeeereenreeeneeennenn XXV
® GELUNE ANSWELS c.vviiiiiiiiititete ettt sttt et e b e sbesaeebe s XXVi
o Contacting Macromediacccoueueuiiniiiiiiiininiicciiececree s Xxvi

XXi

Using this book

This book can to help anyone with a basic understanding of HTML learn to develop

Book structure and contents

Approaches to using this book

ColdFusion. However, this book is most useful if you have basic ColdFusion experience,
or have read Getting Started Building ColdFusion MX Applications. The Getting Started
book provides an introduction to ColdFusion and helps you develop the basic knowledge
that will make using this book easier.

The book is divided into seven parts, as follows:

Part

Description

The CFML Programming

Language

Reusing CFML Code

Developing CFML
Applications

Accessing and Using
Data

Requesting and
Presenting Information

Using Web Elements
and External Objects

Using External
Resources

The Elements of CFML including variables, expressions,
dynamic code, CFScript, and regular expressions.

Techniques for writing code once and using it many times,
including the cfinclude tag, user-defined functions, custom
CFML tags, ColdFusion components, and CFXAPI tags.

How to develop a complete ColdFusion application. Includes
information on error handling, sharing data, locking code,
securing access, internationalization, debugging, and
troubleshooting.

Methods for accessing and using data sources, including an
introduction to SQL and information on using SQL data bases,
LDAP directory services, and the Verity search engine

How to dynamically request information from users and display
results on the user’s browser, including graphing data and
providing data to Flash clients.

How to use XML, Java objects including Enterprise JavaBeans,
JSP pages, web services (including creating web services in
ColdFusion), and COM and CORBA objects.

Methods for getting and sending e-mail, accessing remote
servers using HTTP and FTP, and accessing files and
directories.

Each chapter includes basic information plus detailed coverage of the topic that should
be of use to experienced ColdFusion developers.

This section describes approaches to using this book for beginning ColdFusion
developers, developers with some experience who want to develop expertise, and

advanced developers who want to learn about the new and enhanced features of

ColdFusion MX.

XXii

About This Book

Beginning with ColdFusion
If you learning ColdFusion, a path such as the following might be most effective:
1 Chapter 1 through Chapter 4 to learn the basics of the XML language.
2 Chapter 19 through Chapter 21 to learn about using databases.

3 Chapter 26 and Chapter 27 to learn about requesting data from users.
At this point, you should have a basic understanding of the basic elements of
ColdFusion and can create simple ColdFusion applications. To learn to produce
more complete and robust applications, you could proceed with the following
chapters.

4 Chapter 13 through Chapter 18 to learn how to build a complete ColdFusion
application.

Chapter 22 to learn how to use queries effectively.

6 Chapter 5 through Chapter 11 to learn to use more advanced features of CFML,
including ways to reuse code.

You can then read the remaining chapters as you add new features to your ColdFusion
application.

Developing an in-depth knowledge of ColdFusion

If you have a basic understanding of ColdFusion as presented in Getting Started Building
ColdFusion MX Applications or the Fast Track to ColdFusion course, you might want to
start at Chapter 1 and work through to the end of the book, skipping any specialized
chapters that you are unlikely to need.

Learning about new and modified ColdFusion features

If you are an advanced ColdFusion developer, you might want to learn about new or
changed ColdFusion MX features. In this case, you start with Migrating ColdFusion 5
Applications; then read selected chapters in this book. The following chapters document
features that are new or substantially enhanced in ColdFusion MX:

e Chapter 9, Writing and Calling User-Defined Functions

e Chapter 11, Building and Using ColdFusion Components

o Chapter 16, Securing Applications

o Chapter 17, Developing Globalized Applications

o Chapter 18, Debugging and Troubleshooting Applications

e Chapter 28, Charting and Graphing Data

e Chapter 29, Using the Flash Remoting Service

e Chapter 30, Using XML and WDDX

o Chapter 31, Using Web Services

o Chapter 32, Integrating J2EE and Java Elements in CFML Applications

Nearly all chapters contain information that is new in ColdFusion MX, so you should
also review all other chapters for useful information. The index and the table of contents
are useful tools for finding new features or changed documentation.

Using this book xxiii

Developer resources

Macromedia, Inc. is committed to setting the standard for customer support in developer

education, documentation, technical support, and professional services. The

Macromedia website is designed to give you quick access to the entire range of online

resources. The following table shows the locations of these resources:

Resource

Description

URL

Macromedia
website

Information on
ColdFusion

Macromedia
ColdFusion
Support Center

ColdFusion
Online Forums

Installation
Support

Training

Developer
Resources

Reference Desk

Macromedia
Alliance

General information about Macromedia
products and services

Detailed product information on
ColdFusion and related topics

Professional support programs that
Macromedia offers

Access to experienced ColdFusion
developers through participation in the
Online Forums, where you can post
messages and read replies on many
subjects relating to ColdFusion

Support for installation-related issues for
all Macromedia products

Information about classes, on-site training,
and online courses offered by Macromedia

All the resources that you need to stay on
the cutting edge of ColdFusion
development, including online discussion
groups, Knowledge Base, technical
papers, and more

Development tips, articles,
documentation, and white papers

Connection with the growing network of
solution providers, application developers,
resellers, and hosting services creating
solutions with ColdFusion

http://www.macromedia.com

http://www.macromedia.com/coldfusion

http://www.macromedia.com/support/
coldfusion

http://webforums.macromedia.com/
coldfusion/

http://www.macromedia.com/support/
coldfusion/installation.html

http://www.macromedia.com/support/training

http://www.macromedia.com/desdev/
developer/

http://www.macromedia.com/v1/developer/
TechnologyReference/index.cfm

http://www.macromedia.com/partners/

XXV

About This Book

About Macromedia ColdFusion MX documentation

The ColdFusion documentation is designed to provide support for the complete

spectrum of participants. The print and online versions are organized to let you quickly

locate the information that you need. The ColdFusion online documentation is provided
in HTML and Adobe Acrobat formats.

Printed and online documentation set

The ColdFusion documentation set consists of the following titles:

Book

Description

Installing ColdFusion
MX

Administering
ColdFusion MX

Developing ColdFusion
MX Applications with
CFML

Getting Started
Building ColdFusion
MX Applications

Using Server-Side
ActionScript in
ColdFusion MX

Migrating ColdFusion 5
Applications

CFML Reference

CFML Quick
Reference

Working with Verity
Tools

Using ClusterCATS

Describes system installation and basic configuration for Windows
NT, Windows 2000, Solaris, Linux, and HP-UX.

Describes how to use the ColdFusion Administrator to manage the
ColdFusion environment, including connecting to your data
sources and configuring security for your applications,

Describes how to develop your dynamic web applications,
including retrieving and updating your data, using structures, and
forms.

Contains an overview of ColdFusion features and application
development procedures. Includes a tutorial that guides you
through the process of developing an example ColdFusion
application.

Describes how Macromedia Flash movies executing on a client
browser can call ActionScript code running on the ColdFusion
server. Includes examples of server-side ActionScript and a syntax
guide for developing ActionScript pages on the server.

Describes how to migrate a ColdFusion 5 application to
ColdFusion MX. This book describes the code compatibility
analyzer that evaluates your ColdFusion 5 code to determine any
incompatibilities within it.

Provides descriptions, syntax, usage, and code examples for all
ColdFusion tags, functions, and variables.

A brief guide that shows the syntax of ColdFusion tags, functions,
and variables.

Describes Verity search tools and utilities that you can use for
configuring the Verity K2 Server search engine, as well as creating,
managing, and troubleshooting Verity collections.

Describes how to use Macromedia ClusterCATS, the clustering
technology that provides load-balancing and failover services to
assure high availability for your web servers.

About Macromedia ColdFusion MX documentation xxv

Viewing online documentation

All ColdFusion documentation is available online in HTML and Adobe Acrobat Portable
Document Format (PDF) files. To view the HTML documentation, open the following
URL on the web server running ColdFusion: http://web_rootl cfdocs/dochome.htm.

ColdFusion documentation in Acrobat format is available on the ColdFusion product

CD-ROM.

Getting answers

One of the best ways to solve particular programming problems is to tap into the vast
expertise of the ColdFusion developer communities on the ColdFusion Forums. Other
developers on the forum can help you figure out how to do just about anything with
ColdFusion. The search facility can also help you search messages from the previous 12
months, allowing you to learn how others have solved a problem that you might be
facing. The Forums is a great resource for learning ColdFusion, but it is also a great place
to see the ColdFusion developer community in action.

Contacting Macromedia

Corporate Macromedia, Inc.
headquarters 600 Townsend Street
San Francisco, CA 94103

Tel: 415.252.2000
Fax: 415.626.0554

Web: http:// www.macromedia.com

Technical support Macromedia offers a range of telephone and web-based
support options. Go to http://www.macromedia.com/support/
coldfusionfor a complete description of technical support
services.

You can make postings to the ColdFusion Support Forum
(http://webforums.macromedia.com/coldfusion) at any time.

Sales Toll Free: 888.939.2545

Tel: 617.219.2100
Fax: 617.219.2101

E-mail: sales@macromedia.com

Web: http://www.macromedia.com/store

XXVi About This Book

CHAPTER 1
Introduction to ColdFusion MX

This chapter describes ColdFusion MX and the role it plays in Internet applications,

including Flash MX based applications. It also provides an introduction to the topics
discussed in this book.

Contents

¢ About Internet applications and web application servers..........cccovueeuevinricccncnnen 2
o About ColdFusion MXccociiiiiriiiienienieetetee ettt 4
¢ Using ColdFusion MX with Macromedia Flash MX.......ccccoeeiinnniicnnncccnnns 7
e About J2EE and the ColdFusion architecturecccocevuerierieriesieieieceeeiesese e 8
e ColdFusion features described in this book.......cccceeviiininininiiiie 10

About Internet applications and web application servers

With ColdFusion MX, you develop Internet applications that run on web application
servers. The following sections introduce Internet applications and web application
servers. Later sections explain the specific role that ColdFusion MX plays in this
environment.

About web pages and Internet applications

The Internet has evolved from a collection of static HTML pages to an application
deployment platform. First, the Internet changed from consisting of static web pages to
providing dynamic, interactive content. Rather than providing unchanging content
where organizations merely advertise goods and services, dynamic pages enable
companies to conduct business ranging from e-commerce to managing internal business
processes. For example, a static HTML page lets a bookstore publish its location, list
services such as the ability to place special orders, and advertise upcoming events like
book signings. A dynamic website for the same bookstore lets customers order books
online, write reviews of books they read, and even get suggestions for purchasing books
based on their reading preferences.

More recently, the Internet has become the underlying infrastructure for a wide variety of
applications. With the arrival of technologies such as XML, web services, J2EE (Java 2
Platform, Enterprise Edition), and Microsoft .NET, the Internet has become a
multifaceted tool for integrating business activities. Now, enterprises can use the Internet
to integrate distributed activities, such as customer service, order entry, order fulfillment,
and billing.

ColdFusion MX is a rapid application development environment that lets you build
dynamic websites and Internet applications quickly and easily. It lets you develop
sophisticated websites and Internet applications without knowing the details of many
complex technologies, yet it lets advanced developers take advantage of the full
capabilities of many of the latest Internet technologies.

About web application servers

To understand ColdFusion, you must first understand the role of web application servers.
Typically, web browsers make requests, and web servers, such as Microsoft IIS and the
Apache web server, fulfill those requests by returning the requested information to the
browser. This information includes, but is not limited to, HTML and Macromedia Flash

files.
However, a web server’s capabilities is limited because all it does is wait for requests to

arrive and attempt to fulfill those requests as soon as possible. A web server does not let
you do the following tasks:

o Interact with a database, other resource, or other application.

e Serve customized information based on user preferences or requests.

e Validate user input.

A web server, basically, locates information and returns it to a web browser.

2

Chapter1

Introduction to ColdFusion MX

To extend the capabilities of a web server, you use a web application server, a software
program that extends the web server’s capabilities to do tasks such as those in the
preceding list.

How a web server and web application server work together

The following steps explain how a web server and web application server work together
to process a page request:

1

The user requests a page by typing a URL in a browser, and the web server receives
the request.

The web server looks at the file extension to determine whether a web application
server must process the page. Then, one of the following actions occur:

o If the user requests a file that is a simple web page (often one with an HTM or
HTML extension), the web server fulfills the request and sends the file to the
browser.

o If the user requests a file that is a page that a web application server must process
(one with a CFM, CFML, or CFC extension for ColdFusion requests), the web
server passes the request to the web application server. The web application server
processes the page and sends the results to the web server, which returns those
results to the browser. The following figure shows this process:

3. Web server instructs
application server to

1. Web browser 2. Web server receives the process the page.
requests a web page. page request.
-,
-
5. The web server sends 4. The application server
the output to the browser. processes the page and

generates output.

Because web application servers interpret programming instructions and generate output
that a web browser can interpret, they let web developers build highly interactive and
data-rich websites, which can do tasks such as the following:

Query other database applications for data.
Dynamically populate form elements.
Dynamically generate Flash application data.
Provide application security

Integrate with other systems using standard protocols such as HTTP, FTP, LDAD,
POP, and SMTP

Create shopping carts and e-commerce websites.
Respond with an e-mail message immediately after a user submits a form.
Return the results of keyword searches.

About Internet applications and web application servers 3

About ColdFusion MX

ColdFusion MX is a rapid scripting environment server for creating Rich Internet
Applications. ColdFusion MX CFML is an easy-to-learn tag-based scripting language,
with connectivity to enterprise data and powerful built-in search and charting
capabilities. ColdFusion MX enables developers to easily build and deploy dynamic
websites, content publishing systems, self-service applications, commerce sites, and more.
ColdFusion MX consists of the following core components:

¢ ColdFusion scripting environment

¢ ColdFusion Application Services

e The ColdFusion Administrator

The following sections describe these core components in more detail.

The ColdFusion scripting environment

The ColdFusion scripting environment provides an efficient development model for
Internet applications. At the heart of the ColdFusion scripting environment is the
ColdFusion Markup Language (CFML), a tag-based programming language that
encapsulates many of the low-level details of web programming in high-level tags and
functions.

ColdFusion Markup Language

ColdFusion Markup Language (CFML) is a tag-based language, similar to HTML, that
uses special tags and functions. With CFML, you can enhance standard HTML files with
database commands, conditional operators, high-level formatting functions, and other
elements to rapidly produce easy-to-maintain web applications. However, CFML is not
limited to enhancing HTML. For example, you can create Macromedia Flash MX
applications consisting entirely of Flash elements and CFML. Similarly, you can use
CFML to create web services for use by other applications.

The following sections briefly describe basic CFML elements. For more information, see
Chapter 2, “Elements of CFML” on page 15.

CFML tags
CFML looks similar to HTML—it includes starting and, in most cases, ending tags, and
each tag is enclosed in angle brackets. All ending tags are preceded with a forward slash (/
) and all tag names are preceded with cf; for example:
<{cftagname>

tag body text and CFML

</cftagname>
CFML increases productivity by providing a layer of abstraction that hides many
low-level details involved with Internet application programming. At the same time,
CFML is extremely powerful and flexible. ColdFusion lets you easily build applications
that integrate files, databases, legacy systems, mail servers, FTP servers, objects, and
components.

4 Chapter1 Introduction to ColdFusion MX

CFML includes approximately 100 tags. ColdFusion tags serve many functions. They
provide programming constructs, such as conditional processing and loop structures.
They also provide services, such as charting and graphing, full-text search, access to

protocols such as FTT, SMTP/POP, and HTTP, and much more. The following table
lists a few examples of commonly-used ColdFusion tags:

Tag Purpose

cfquery Establishes a connection to a database (if one does not exist), executes a
query, and returns results to the ColdFusion environment.

cfoutput Displays output that can contain the results of processing ColdFusion
functions, variables, and expressions.

cfset Sets the value of a ColdFusion variable.

cfmail Lets an application send SMTP mail messages using application variables,
query results, or server files. (Another tag, cfpop, gets mail.)

cfchart Converts application data or query results into graphs, such as bar charts or pie
charts, in Flash, JPG, or PNG format.

cfobject Invokes objects written in other programming languages, including COM
components, Java objects such as Enterprise JavaBeans, or CORBA objects.

CFML Reference describes the CFML tags in detail.

CFML functions and CFScript

CFML includes approximately 270 built-in functions. These functions perform a variety
of roles, including string manipulation, data management, and system functions. CFML
also includes a built-in scripting language, CFScript, that lets you write code in that is
familiar to programmers and JavaScript writers.

CFML extensions

You can extend CFML further by creating custom tags or user-defined functions
(UDFs), or by integrating COM, C++, and Java components (such as JSP tag libraries).
You can also create ColdFusion components, which encapsulate related functions and
properties and provide a consistent interface for accessing them.

All these features let you easily create reusable functionality that is customized to the
types of applications or websites that you are building.

CFML development tools

Macromedia Dreamweaver MX helps you develop ColdFusion applications efficiently. It
includes many features that simplify and enhance ColdFusion development, including
tools for debugging CFML. Because CEML is written in an HTML-like text format, and
you often use HTML in ColdFusion pages, you can also use an HTML editor or a text
editor, such as Notepad, to write ColdFusion applications.

About ColdFusion MX 5

Server-side ActionScript

Another feature of the ColdFusion scripting environment is server-side ActionScript.
ActionScript is the JavaScript-based language used to write application logic in
Macromedia Flash MX. By bringing this language to the server, ColdFusion MX enables
Flash developers to use their familiar scripting environment to connect to ColdFusion
resources and deliver the results to client-side applications using the integrated
Macromedia Flash Remoting service. Using server-side ActionScript Flash programmers
can create ColdFusion services, such as SQL queries, for use by Flash clients.

For more information about using Server-Side ActionScript in ColdFusion MX, see
Using Server-Side ActionScript in ColdFusion MX.

ColdFusion application services

The ColdFusion application services are a set of built-in services that extend the
capabilities of the ColdFusion scripting environment. These services include the
following:

¢ Charting and graphing service Generates visual data representations including line,
bar, pie, and other charts.

¢ Full-text search service Searches documents and databases using the Verity search
engine.

¢ Flash Remoting service Provides a high performance protocol for exchanging data
with Flash MX clients.

The ColdFusion MX Administrator

The ColdFusion MX Administrator configures and manages the ColdFusion application
server. It is a secure web-based application that you can access using any web browser,
from any computer with an Internet connection.

You can manage the following options with the ColdFusion Administrator:

¢ ColdFusion data sources

¢ Debugging and logging output

e Server settings

o Application security

For more information about the ColdFusion Administrator, see Administering ColdFusion
MX.

6

Chapter1

Introduction to ColdFusion MX

Using ColdFusion MX with Macromedia Flash MX

Macromedia Flash MX is designed to overcome the many limitations of HTML and
solve the problem of providing efficient, interactive, user interfaces for Internet
applications. ColdFusion MX is designed to provide a fast efficient environment for
developing and providing data-driven Internet applications on your server. Using the
following features, ColdFusion MX and Flash MX can work together in a seamless
manner to provide complete interactive Internet applications:

e ColdFusion MX native Flash connectivity Lets Flash MX clients interact with
ColdFusion MX in an efficient, secure, and reliable way. Flash MX includes
ActionScript commands that connect to ColdFusion components (CFC) and
ColdFusion pages. Flash clients communicate with ColdFusion applications using
Action Message Format protocol over HTTP, which provides fast, lightweight, binary
data transfer between the Flash client and ColdFusion.

¢ Flash MX development application debugger Lets you trace your application
logic as it executes between Flash and ColdFusion.

¢ ColdFusion MX Server-Side ActionScript Lets Flash programmers familiar with
ActionScript create ColdFusion services, such as SQL queries, for use by Flash clients.

Together, these features let developers build integrated applications that run on the Flash
client and the ColdFusion scripting environment.

For more information about using Server-Side ActionScript in ColdFusion MX, see
Using Server-Side ActionScript in ColdFusion MX. For more information on developing
Flash applications in ColdFusion, see Chapter 29, “Using the Flash Remoting Service”
on page 673. For more information about using Flash MX, go to the following URL:

http://www.macromedia.com.

Using ColdFusion MX with Macromedia Flash MX 7

About J2EE and the ColdFusion architecture

As the Internet software market has matured, the infrastructure services required by
distributed Internet applications, including ColdFusion applications, have become
increasingly standardized. The most widely adopted standard today is the Java 2
Platform, Enterprise Edition (J2EE) specification. J2EE provides a common set of
infrastructure services for accessing databases, protocols, and operating system
functionality, across multiple operating systems.

About ColdFusion and the J2EE platform

ColdFusion MX uses the J2EE infrastructure for many of its base services. By
implementing the ColdFusion scripting environment on top of the J2EE platform,
ColdFusion MX takes advantage of the power of the J2EE platform, but provides this
power through the easy-to-use ColdFusion scripting environment.

ColdFusion MX consists of a family of products that differ in how they integrate with
and use J2EE services. (Some ColdFusion editions might not be available at the time of
the first ColdFusion MX release.)

e ColdFusion MX Server is a standalone servers that includes the entire infrastructure
necessary to run ColdFusion applications, including an embedded Java™ server
based on Macromedia JRun technology.

¢ ColdFusion MX for J2EE Application Servers consists of editions of ColdFusion MX
that enable you to add ColdFusion MX capabilities to a J2EE server installation,
including Macromedia JRun and other J2EE application servers.

The following figure shows how these editions are structured. Each edition supports the
same ColdFusion scripting environment and includes the built-in application services,
while the different editions enable developers to deploy ColdFusion MX in the
configuration of their choice.

ColdFusion MX Architecture

ColdFusion MX Server

ColdFusion Scripting Environment

ColdFusion MX for J2EE App Servers

ColdFusion Scripting Environment

Charting and Full-Text Flash
Graphing Search Remoting
J2EE Application Server

J2EE infrastructure services and J2EE application server

ColdFusion MX is implemented on the Java technology platform provided by a J2EE
application server. It uses either an integrated J2EE infrastructure that uses Macromedia
JRun technology, or an independent J2EE application server. The Java technology

Charting and Full-Text Flash
Graphing Search Remoting
1

8 Chapter1 Introduction to ColdFusion MX

platform provides much of the core functionality required by ColdFusion, including
database connectivity, naming and directory services, and other runtime services.

Because ColdFusion is built on a J2EE platform, you can easily integrate J2EE and Java

functionality into your ColdFusion application. As a result, ColdFusion pages can do any
of the following:

o Use custom JSP (Java Server Pages) tags from JSP tag libraries
o Interoperate with JSP pages
e Use Java servlets

o Use Java objects, including the J2EE Java API, JavaBeans, and Enterprise JavaBeans

For more information on using J2EE features in ColdFusion, see Chapter 32,
“Integrating J2EE and Java Elements in CFML Applications” on page 759.

About J2EE and the ColdFusion architecture 9

ColdFusion features described in this book

ColdFusion provides a comprehensive set of features for developing and managing
Internet applications. These features enhance the speed and ease of development, and let
you dynamically deploy your applications, integrate new and legacy technologies, and
build secure applications.

The following table describes the primary ColdFusion features that are discussed in this
book, and lists the chapters that describe them. This table is only a summary of major
CFML features; this book also includes information about other features. Also, this table
does not include features that are described in other books.

Feature Description Chapters

CFML language = CFML is a fully featured tag-oriented Internet application ~ 2-5
language. It includes a wide range of tags, functions,
variables, and expressions.

CFScript CFScript is a server-side scripting language that providesa 6
subset of ColdFusion functionality in script syntax.
Regular ColdFusion provides several functions that use regular 7,25
expressions expressions for string manipulation. It also lets you use
regular expressions in text input tags.
Reusable ColdFusion lets you create several types of elements, such 8-12
elements as user-defined functions and ColdFusion components,
that you write once and can use many times.
User-defined You can use CFScript or the cffunction tag to create your 9
functions own functions. These functions can incorporate all of the
(UDFs) built-in ColdFusion tags and functions, plus other
extensions.
Custom CFML You can create custom ColdFusion tags using CFML. 10
tags These tags can have bodies and can call other custom
tags.
ColdFusion ColdFusion components encapsulate multiple functions 1
components and related data in a single logical unit. ColdFusion

components can have many uses, and are particularly
useful in creating web services and Flash interfaces for
your application.

ColdFusion You can create custom tags in Java or C++. These tags can 12
extension (CFX) use features that are only available when using
tags programming languages. However, CFX tags cannot have

tag bodies.
ColdFusion ColdFusion supports many ways of building an application, 13-17
application and includes specific features, such as the Application.cfm
structure page, built-in security features, and shared scopes, that

help you optimize your application structure.
Error handling ColdFusion provides several mechanisms for handling 14
mechanisms data, including custom error pages and exception-handling

tags and functions, such as cftry and cfcatch.

10 Chapter1 Introduction to ColdFusion MX

Feature Description Chapters
Shared and Using shared and persistent scopes, you can make data 15
persistent variable available to a single user over one or many browser

scopes sessions, or to multiple users of an application or server.

Code locking You lock sections of code that access in-memory shared 15
scopes or use external resources that are not safe for
multiple simultaneous access.

Application ColdFusion provides mechanisms, including the cflogin 16

security tag, for authenticating users and authorizing them to
access specific sections of your application. You can also
use resource security, which secures access to ColdFusion
resources based on the ColdFusion page location.

Application ColdFusion supports global applications that use different 17

globalization character sets and locales, and provides tags and functions
designed to support globalizing your applications.

Debugging tools Using debugging output, the cftrace tag, logging features, 18
and the Code Analyzer, you can locate and fix coding
errors.

Database access ColdFusion can access SQL databases to retrieve, add, 19-21

and management and modify data. This feature is one of the core functions of
many dynamic applications.

Queries of Queries You can use a subset of standard SQL within ColdFusion 22
to manipulate any data that is represented as a record set,
including database query results, LDAP directory
information, and other data.

LDAP directory ColdFusion applications can access and manipulate datain 23

access and LDAP (Lightweight Directory Access Protocol) directory

management services. These directories are often used for security
validation data and other directory-like information.

Indexing and ColdFusion applications can provide full-text search 24-25

searching data capabilities for documents and data sources using the
Verity search engine.

Dynamic forms With ColdFusion, you can use HTML and forms to control 26-27
the data displayed by a dynamic web page. You can also
use the cfformtag to enrich your forms with sophisticated
graphical controls, and perform input data validation.

Data graphing You can use the cfchart tag to display your data 28
graphically.

MacromediaFlash You can use native Flash connectivity built into 29

integration Macromedia ColdFusion MX to help build dynamic Flash
user interfaces for ColdFusion applications.

XML document ColdFusion applications can create, use, and manipulate 30

processing and XML documents. ColdFusion also provides tools to use

creation Web Distributed Data Exchange (WDDX), an XML dialect

for transmitting structured data.

ColdFusion features described in this book

i

Feature Description Chapters

Web services ColdFusion applications can use available SOAP-based 31
web services, including Microsoft NET services.
ColdFusion applications can also use ColdFusion
components to provide web services to other applications
over the Internet.

Java and J2EE You can integrate J2EE elements, including JSP pages, 32
Integration JSP tag libraries, and Java objects, including Enterprise
JavaBeans (EJBs), into your ColdFusion application.

COMand The cfobject tag lets you use COM (Component Object 33
CORBA objects Model) or DCOM (Distributed Component Object Model)
and CORBA (Common Object Request Broker) objects in
your ColdFusion applications.

E-mail messages You can add interactive e-mail features to your ColdFusion 34
applications using the cfmail and cfpop tags.

HTTPand FTP The cfhttpand cfftptags provide simple methods of 35
using HTTP (Hypertext Transfer Protocol) and FTP (File
Transfer Protocol) communications in your application.

File and directory You can use the cffile, cfdirectory, and cfcontent tags 36
access to read, write, and manage files and directories on the
server.

12 Chapter1 Introduction to ColdFusion MX

PART |

The CFML Programming
Language

This part describes the elements of the CFML programming language. It
tells you how to use CFML tags, functions, variables and expressions, the
CFScript scripting language, and regular expressions.

The following chapters are included:

Elements Of CEML ... e 15
Using ColdFusion Varables............c.ccooioooiioeeceeeeeeeeeeeee . 33
Using Expressions and Pound SIgNS ..., 65
Using Arrays and StIUCTUIESc..oovivceeceeeeceeeee e 87
Extending ColdFusion Pages with CFML Scripting ..o, 5

Using Regular Expressions in FUNCHIONS ..., 133

CHAPTER 2
Elements of CFML

This chapter provides an overview of the basic elements of CFML, including tags,
functions, constants, variables, expressions, and CFScript. The chapters in Part I of this
book describe these topics in detail.

Contents

® TREFOAUCTHON 1ottt ettt bbbt 16
® CRaracler CASE....euveueeuieiietieieet ettt ettt sttt ettt b et b b st ne 16
8 A e 17
® FUNCHOMS. ¢ttt ettt sttt et s e st e saneeaneeas 19
® BXPIESSIONS c.viiiiiiiiiiiiiic i 21
® COMSTANLS 1.ttt st s s 21
® Variables ..o ettt et nes 22
® DIATA LYPES vttt 24
¢ ColdFUsion COMPONENLS.....c.cueurririererinirereieieirteteteitterere et sese e sesenes 25
® CFSCIIPT ittt ettt s s 26
® FLOW CONTIOL ittt 27
® (COMUMIEIIES .t euveetteeatee et st et e et eb e sab e et eshbe s st e bt e sabeebeesabe e bt e shbeeabeesabeeabeesaneenseens 31
o Special CharaCterscovieirieuirieiricic e 31
® ReSErved WOIdS ..c.veuieiiiiiiiiirt et e 32

15

Introduction

This chapter introduces and describes the basic elements of CFML. These elements make
CFML a powerful tool for developing interactive web applications. Because CFML is a
dynamic application development tool, it has many of the features of a programming
language, including the following:

e Functions

o Expressions

e Variables and constants

o Flow-control constructs such as if-then and loops

CFML also has a “language within a language”, CFScript, which enables you to use a
syntax similar to JavaScript for many operations.

This chapter introduces these elements and other basic CFML entities such as data types,
comments, escape characters, and reserved words.

The remainder of Part I of this book provides more detailed information on many of the
basic CFML elements. The rest of this book helps you use these elements effectively in
your applications.

Character case

The ColdFusion Server is case-insensitive. For example, the following all represent the

cfset tag: cfset, CFSET, CFSet, and even cfsEt. However, you should get in the habit of

consistently using the same case rules in your programs; for example:

o Develop consistent rules for case use, and stick to them. If you use lowercase
characters for some tag names, use them for all tag names.

o Always use the same case for a variable. For example, do not use both myvariable and
MyVariable to represent the same variable on a page.

If you follow these rules, you will prevent errors on application pages where you use both
CFML and case-sensitive languages, such as JavaScript,

16

Chapter 2 Elements of CFML

Tags

Tag syntax

Built-in tags

ColdFusion tags tell the ColdFusion Server that it must process information. The
ColdFusion Server only processes tag contents; it returns text outside of ColdFusion to
the web server unchanged. ColdFusion provides a wide variety of built-in tags and lets
you create custom tags.

ColdFusion tags have the same format as HTML tags. They are enclosed in angle
brackets (< and >) and can have zero or more named attributes. Many ColdFusion tags
have bodies; that is, they have beginning and end tags with text to be processed between
them. For example:

<cfoutput>
Hello #FYourNameif!

</cfoutput>

Other tags, such as cfset and cfftp,never have bodies; all the required information goes
between the beginning (<) character and the ending (>) character, as in the following
example:

{cfset YourName="Bob">

Sometimes, although the tag can have a body, you do not need to put anything in it
because the attributes specify all the required information. You can omit the end tag and
put a forward slash character before the closing (>) character, as in the following example:

<cfexecute name="C:\winNT\System32\netstat.exe" arguments = "-e"
outputfile="C:\Temp\out.txt" timeout = "1" />

Note: The cfset tag differs from other tags in that it has neither a body nor arguments.
Instead, the tag encloses an assignment statement that assigns a value to a variable.

Over 80 built-in tags make up the heart of ColdFusion. These tags have many uses,

including the following:

e Manipulating variables

o Creating interactive forms

o Accessing and manipulating databases

¢ Displaying data

¢ Controlling the flow of execution on the ColdFusion page

¢ Handling errors

o Processing ColdFusion pages

e Managing the CEML application framework

e Manipulating files and directories

o Using external tools and objects, including Verity collections, COM, Java, and
CORBA objects, and executable programs

e Using protocols, such as mail, http, ftp, and pop

Much of this document describes how to use these tags effectively. CFML Reference

documents each tag in detail.

Tags 17

Custom tags

ColdFusion lets you create custom tags. You can create two types of custom tags:
e CFML custom tags that are ColdFusion pages
o CFX tags that you write in a programing language such as Java or C++

Custom tags can encapsulate frequently used business logic or display code. These tags
enable you to place frequently used code in one place and call it from many places.
Custom tags also let you abstract complex logic into a single, simple interface. They
provide an easy way to distribute your code to others; you can even distribute encrypted
versions of the tags to prevent access to the tag logic.

Currently, over 1,000 custom tags are available on the Macromedia developer’s exchange
(htep://www.coldfusion.com/Developer/Gallery/index.cfm). They perform tasks ranging
from checking if Cookies and JavaScript are enabled on the client's browser to moving
items from one list box to another. Many of these tags are free and include source code.

CFML custom tags

When you write a custom tag in CFML, you can take advantage of all the features of the
ColdFusion language, including all built-in tags and even other custom tags. CFML
custom tags can include body sections and end tags. Because they are written in CFML,
you do not need to know a programming language such as Java. CFML custom tags
provide more capabilities than user-defined functions, but are less efficient.

For more information on CFML custom tags, see Chapter 10, “Creating and Using
Custom CFML Tags” on page 197. For information about, and comparisons among,
ways to reuse ColdFusion code, including CFML custom tags, user-defined functions,
and CFX tags, see Chapter 8, “Reusing Code in ColdFusion Pages” on page 157.

CFX Tags

CFX tags are ColdFusion custom tags that you write in a programming language such as
Java or C++. These tags can take full advantage of all the tools and resources provided by
these languages, including their access to runtime environments. CFX tags also generally
execute faster than CFML custom tags because they are compiled. CFX tags can be
cross-platform, but are often platform-specific, for example if they take advantage of
COM objects or the Windows APL

For more information on CFX tags, see Chapter 12, “Building Custom CFXAPI Tags”
on page 243.

18 Chapter 2

Elements of CFML

Functions

Functions typically manipulate data and return a result. CFML includes over 250
built-in functions. You can also use CFScript to create user-defined functions (UDFs),
sometimes referred to as custom functions.

Functions have the following general form:

SfunctionName([argumentl, argument2]]...)

Some functions, such as the Now function take no arguments. Other functions require one

or more comma-separated arguments and can have additional optional arguments. All
ColdFusion functions return a value. For example, Round(3.14159) returns the value 3.

Built-in functions

ColdFusion built-in functions perform a variety of tasks, including, but not limited to,
the following:

o Creating and manipulating complex data variables, such as arrays, lists, and structures
¢ Creating and manipulating queries

o Creating, analyzing, manipulating, and formatting strings and date and time values

o Evaluating the values of dynamic data

e Determining the type of a variable value

¢ Converting data between formats

o Performing mathematical operations

o Getting system information and resources

For alphabetical and categorized lists of ColdFusion functions, see CFML Reference.

You use built-in functions throughout ColdFusion pages. Built-in functions are
frequently used in a cfset or cfoutput tag to prepare data for display or further use. For
example, the following line displays today’s date in the format October 12, 2001:

<cfoutput>fDateFormat(Now(), "mmmm d, yyyy")#</cfoutput>

Note that this code uses two nested functions. The Now function returns a ColdFusion
date-time value representing the current date and time. The DateFormat function takes
the value returned by the Now function and converts it to the desired string representation.

Functions are also valuable in CFScript scripts. ColdFusion does not support ColdFusion
tags in CFScript, so you must use functions to access ColdFusion functionality in scripts.

User-defined functions

You can write your own functions, user-defined functions (UDFs). You can use these
functions in ColdFusion expressions or in CFScript. You can call a user-defined function
anywhere you can use a built-in CFML function. You create UDFs using the cffunction
tag or the CFScript function statement. UDFs that you create using the cffunction tag
can include ColdFusion tags and functions. UDFs that you create in CFScript can only
include functions.

User-defined functions let you encapsulate logic and operations that you use frequently
in a single unit. This way, you can write the code once and use it multiple times. UDFs
ensure consistency of coding and enable you to structure your CFML more efficiently.

Functions 19

Typical user-defined functions include mathematical routines, such as a function to
calculate the logarithm of a number; string manipulation routines, such as a function to
convert a numeric monetary value to a string such as "two dollars and three cents"; and
can even include encryption and decryption routines.

Note: The Common Function Library Project at http://www.cflib.org includes a number of
free libraries of user-defined functions.

For more information on user-defined functions, see Chapter 9, “Writing and Calling
User-Defined Functions” on page 167.

20 Chapter 2 Elements of CFML

Expressions

ColdFusion expressions consist of operands and operators. Operands are comprised of
constants and variables, such as “Hello” or MyVariable. Operators, such as the string
concatenation operator (&) or the division operator (/) are the verbs that act on the
operands. ColdFusion functions also act as operators.

The simplest expression consists of a single operand with no operators. Complex
expressions consist of multiple operands and operators. For example, the following
statements are all ColdFusion expressions:

12

MyVariable

(1+1)/2

"father" & "Mother"

Form.divisor/Form.dividend

Round(3.14159)

The following sections briefly describe constants and variables. For detailed information
on using variables, see Chapter 3, “Using ColdFusion Variables” on page 33. For detailed
information on expressions and operators, see Chapter 4, “Using Expressions and Pound
Signs” on page 65.

Constants

The value of a constant does not change during program execution. Constants are simple
scalar values that you can use within expressions and functions, such as “Robert Trent
Jones” and 123.45. Constants can be integers, real numbers, time and date values,
Boolean values, or text strings. ColdFusion does not allow you to give names to
constants.

Expressions 21

Variables

Variables are the most frequently used operands in ColdFusion expressions. Variable
values can be set and reset, and can be passed as attributes to CFML tags. Variables can be
passed as parameters to functions, and can replace most constants.

ColdFusion has a number of built-in variables that provide information about the server
and are returned by ColdFusion tags. For a list of the ColdFusion built-in variables, see
CFML Reference.

The following two characteristics classify a variable:

o The scope of the variable, which indicates where the information is available and how
long the variable persists

o The data type of the variable’s value, which indicates the kind of information a
variable represents, such as number, string, or date

The following section lists and briefly describes the variable scopes. “Data types” on page
24 lists data types (which also apply to constant values). For detailed information on
ColdFusion variables, including data types, scopes, and their use, see Chapter 3, “Using
ColdFusion Variables” on page 33.

Variable scopes

The following table briefly lists ColdFusion variable scopes:

Scope Description

Variables The default scope for variables of any type that are created with the cfset

(local) and cfparamtags. A local variable is available only on the page on which it is
created and any included pages.

Form The variables passed from a form page to its action page as the result of
submitting the form.

URL The parameters passed to the current page in the URL that is used to call it.

Attributes The values passed by a calling page to a custom tag in the custom tag’s

attributes. Used only in custom tag pages.

Caller A reference, available in a custom tag, to the Variables scope of the page
that calls the tag. Used only in custom tag pages.

ThisTag Variables that are specific to a custom tag, including built-in variables that
provide information about the tag. Used only in custom tag pages. A
nested custom tag can use the cfassociate tag to return values to the
calling tag’s ThisTag scope.

Request Variables that are available to all pages, including custom tags and nested
custom tags, that are processed in response to an HTTP request. Used to
hold data that must be available for the duration of one HTTP request.

CaGl Environment variables identifying the context in which a page was
requested. The variables available depend on the browser and server
software.

Cookie Variables maintained in a user’s browser as cookies.

22 Chapter 2 Elements of CFML

Scope

Description

Client

Session

Application

Server

Flash

Arguments

This

function local

Variables that are associated with one client. Client variables let you
maintain state as a user moves from page to page in an application and are
available across browser sessions.

Variables that are associated with one client and persist only as long as the
client maintains a session.

Variables that are associated with one, named, application on a server. The
cfapplicationtag name attribute specifies the application name.

Variables that are associated with the current ColdFusion Server. This
scope lets you define variables that are available to all your ColdFusion
pages, across multiple applications.

Variables sent by a Macromedia Flash movie to ColdFusion and returned
by ColdFusion to the movie.

Variables passed in a call to a user-defined function or ColdFusion
component method.

Variables that are declared inside a ColdFusion component orin a
cffunction tag that is not part of a ColdFusion component.

Variables that are declared in a user-defined function and exist only while
the function executes.

Variables 23

Data types

ColdFusion is considered typeless because you do not explicitly specify variable data
types. However, ColdFusion data, the constants and the data that variables represent, do
have data types, which correspond to the ways the data is stored on the computer.

ColdFusion data belongs to the following type categories:

Category Description and types

Simple Represents one value. You can use simple data types directly in
ColdFusion expressions. ColdFusion simple data types are:
e strings, such as "This is a test."
e integers, such as 356
e real numbers, such as -3.14159
e Boolean values, True or False
e date-time values, such as 3:00 PM July 12, 2001

Complex A container for data. Complex variables generally represent more than
one value. ColdFusion built-in complex data types are:
e arrays
e structures
e Queries

Binary Raw data, such as the contents of a GIF file or an executable program
file

Object COM, CORBA, Java, web services, and ColdFusion Component

objects: Complex objects that you create and access using the
cfobject tag and other specialized tags.

For more information on ColdFusion data types, see Chapter 3, “Using ColdFusion
Variables” on page 33.

24

Chapter 2 Elements of CFML

ColdFusion components

ColdFusion components encapsulate multiple, related, functions. A ColdFusion

component is essentially a set of related user-defined functions and variables, with

additional functionality to provide and control access to the component contents.

ColdFusion components can make their data private, so that it is available to all

functions (also called methods) in the component, but not to any application that uses

the component.

ColdFusion components have the following features:

o They are designed to provide related services in a single unit.

o They can provide web services and make them available over the internet.

o They can providing ColdFusion services that Flash clients can call directly.

o They have several features that are familiar to object-oriented programmers including
data hiding, inheritance, packages, and introspection.

For more information on ColdFusion components, see Chapter 11, “Building and Using

ColdFusion Components” on page 217

ColdFusion components 25

CFScript

CFScript is a language within a language. CFScript is a scripting language that is similar
to JavaScript but is simpler to use. Also, unlike JavaScript CEScript only runs on the
ColdFusion Server; it does not run on the client system. A CFScript script can use all
ColdFusion functions and all ColdFusion variables that are available in the script’s scope.

CFScript provides a compact and efficient way to write ColdFusion logic. Typical uses of
CFScript include:

o Simplifying and speeding variable setting

¢ Building compact flow control structures

o Encapsulating business logic in user-defined functions

The following sample script populates an array and locates the first array entry that starts
with the word “key”. It shows several of the elements of CFScript, including setting
variables, loop structures, script code blocks, and function calls. Also, the code uses a
cfoutput tag to display its results. While you can use CFScript for output, the cfoutput
tag is usually easier to use.

<cfscript>
strings = ArrayNew(1);
strings[1]="the";
strings[2]="key to our";
strings[4]="idea";
for(i=1 ; i LE4 ; i =1+l)
{

if(Find("key",strings[i],1))

break; }

</cfscript>
<cfoutput>Entry #i# starts with "key"</cfoutput>

You use CFScript to create user-defined functions

For more information on CFScript, see Chapter 6, “Extending ColdFusion Pages with
CFML Scripting” on page 115. For more information on user-defined functions, see
Chapter 9, “Writing and Calling User-Defined Functions” on page 167.

26 Chapter 2 Elements of CFML

Flow control

ColdFusion provides several tags that let you control how a page gets executed. These
tags generally correspond to programming language flow control statements, such as if,
then, and else. The following tags provide ColdFusion flow control.

Tags Purpose

cfif, cfelseif, cfelse Select sections of code based on whether expressions are
True or False.

cfswitch, cfcase, Select among sections of code based on the value of an

cfdefaultcase expression. Case processing is not limited to True and

False conditions.

cfloop, cfbreak Loop through code based on any of the following values:

entries in a list, keys in a structure or external object, entries
in a query column, an index, or the value of a conditional
expression.

cfabort, cfexit End processing of a ColdFusion page or custom tag.

This section provides a basic introduction to using flow-control tags. CFScript also
provides a set of flow-control statements. For information on using flow-control
statements in CFScript, see Chapter 6, “Extending ColdFusion Pages with CFML
Scripting” on page 115. For more details on using flow-control tags, see the reference
pages for these tags in CFML Reference.

cfif, cfelseif, and cfelse

The cfif, cfelseif, and cfelse tags provide if-then-else conditional processing, as

follows:

1 The cfif tag tests a condition and executes its body if the condition is True.

2 If the preceding cfif (or cfelseif) test condition is False, the cfelseif tag tests
another condition and executes its body if that condition is True.

3 The cfelse tag can optionally follow a cfif tag and zero or more cfelseif tags. Its

body executes if all the preceding tags’ test conditions are False.

The following example shows the use of the cfif, cfelseif, and cfelse tags. If the value
of the type variable is “Date,” the date displays; if the value is “Time,” the time; displays
otherwise, both the time and date display.

<cfif type IS "Date">

<cfoutput>fDateFormat (Now())#</cfoutput>

<cfelseif type IS "Time">

<cfoutput>#fTimeFormat(Now())#</cfoutput>

{cfelse>

<cfoutput>ffTimeFormat (Now())#, #DateFormat(Now())#</cfoutput>

fefif>

Flow control

27

cfswitch, cfcase, and cfdefaultcase

The cfswitch, cfcase, and cfdefaultcase tags let you to select among different code
blocks based on the value of an expression. ColdFusion processes these tags as as follows:

1 The cfswitch tag evaluates an expression. The cfswitch tag body contains one or
more cfcase tags and optionally includes cfdefaultcase tag.

2 Each cfcase tag in the cfswitch tag body specifies a value or set of values. If a value
matches the value determined by the expression in the cfswitch tag, ColdFusion runs
the code in the body of the cfcase tag and then exits the cfswitch tag. If two cfcase
tags have the same condition, ColdFusion generates an error.

3 If none of the cfcase tags match the value determined by the cfswitch tag, and the
cfswitch tag body includes a cfdefaultcase tag, ColdFusion runs the code in the
cfdefaultcase tag body.

Note: Although the cfdefaultcasetag does not have to follow all cfcase tags, it is good
programming practice to put it at the end of the cfswitch statement.

The cfswitch tag provides better performance than a cfif tag with multiple cfelseif
tags, and is easier to read. Switch processing is commonly used when different actions are
required based on a a string variable such as a month or request identifier.

The following example shows switch processing:

<cfoutput query = "GetEmployees">
<cfswitch expression = #fDepartmentff>
<{cfcase value = "Sales">
#FirstNameft ##LastNameff is in Sales

<{/cfcase>
<{cfcase value = "Accounting">
JHFirstNamest #LastNameft is in Accounting

<{/cfcase>
<{cfcase value = "Administration">
#FirstNameft #LastNameff is in Administration

</cfcase>
<cfdefaultcase>{fFirstNamest #LastNameft is not in Sales,
Accounting, or Administration.

<{/cfdefaultcase>
</cfswitch>
</cfoutput>

cfloop and cfbreak

The cfloop tag loops through the tag body zero or more times based on a condition
specified by the tag attributes. The cfbreak tag exits a cf1oop tag.

28

Chapter 2 Elements of CFML

cfloop
The cfloop tag provides five types of loops:

Loop type Description

Index Loops through the body of the tag and increments a counter variable by
a specified amount after each loop until the counter reaches a specified
value.

Conditional Checks a condition and runs the body of the tag if the condition is Tru.e

Query Loops through the body of the tag once for each row in a query.

List Loops through the body of the tag once for each entry in a list.

Collection Loops through the body of the tag once for each key in a ColdFusion

structure or item in a COM/DCOM object.

The following example shows a simple index loop:

<cfloop index = "LoopCount" from =1 to = 5>
The Toop index is <cfoutput>ffLoopCountif</cfoutput>.

</cfloop>

The following example shows a simple conditional loop. The code does the following:
1 Sets up a ten-element array with the word "kumquats" in the fourth entry.

2 Loops through the array until it encounters an array element containing "kumquats”
or it reaches the end of the array.

3 Prints out the value of the Boolean variable that indicates whether it found the word
kumquats and the array index at which it exited the loop.

<cfset myArray = ArrayNew(1)>

<I--- Use ArraySet to initialize the first ten elements to 123 --->
{cfset ArraySet(myArray, 1, 10, 123)>

<cfset myArray[4] = "kumquats">

<{cfset foundit = False>

{cfset i = 0>

<cfloop condition = "(NOT foundit) AND (i LT ArraylLen(myArray))">
{cfset i =1+ 1>
<cfif myArray[i] IS "kumquats">

<cfset foundit = True>

<Jefif>

</cfloop>

<cfoutput>

i s #HiKbr>

foundit is #founditi

</cfoutput>

Note: You can get an infinite conditional loop if you do not force an end condition. In this
example, the loop is infinite if you omit the <cfset i = i + 1> statement. To end an infinite
loop, stop the ColdFusion application server.

Flow control 29

cfbreak

The cfbreak tag exits the cf1oop tag. You typically use it in a cfif tag to exit the loop if a
particular condition occurs. The following example shows the use of a cfbreak tag in a
query loop:
<cfloop query="fruitOrder">
cfif fruit IS "kumquat">
<cfoutput>You cannot order kumquats!
</cfoutput>
<cfbreak>
</cfif>

<cfoutput>You have ordered ffquantityd# #fruits.
</cfoutput>
</cfloop>

cfabort and cfexit

The cfabort tag stops processing of the current page at the location of the cfabort tag.
ColdFusion returns to the user or calling tag everything that was processed before the
cfabort tag. You can optionally specify an error message to display. You can use the
cfabort tag as the body of a cfif tag to stop processing a page when a condition, typically
an error, occurs.

The cfexit tag controls the processing of a custom tag, and can only be used in
ColdFusion custom tags. For more information see, “Terminating tag execution,” in
g g rag

Chapter 10 and CFML Reference.

30 Chapter 2 Elements of CFML

Comments

ColdFusion comments have a similar format to HTML comments. However, they use
three dash characters instead of two; for example:

<!--- This is a ColdFusion Comment. Browsers do not receive it. --->

The ColdFusion Server removes all ColdFusion comments from the page before
returning it to the web server. As a result, the page that a user browser receives does not
include the comment, and users cannot see it even if they view the page source.

You can embed CFML comments in begin tags (not just tag bodies), functions calls, and
variable text in pound signs. ColdFusion ignores the text in comments such as the

following:
{cfset MyVar = varl <!--- & var2 --->>
<cfoutput>#fDateformat (now() <!---, "dddd, mmmm yyyy" --->){K/cfoutput>

This technique can be useful if you want to temporarily comment out parts of
expressions or optional attributes or arguments.

Note: You cannot embed comments inside a tag names or function name, such as
<cf_My<!--- New --->CustomTag». You also cannot embed comments inside strings, as in the
following example: IsDefined("My<!--- New --->Variable").

Special characters

The double quotation marks ("), single quotation mark ('), and pound sign (#) characters
have special meaning to ColdFusion. To include any of them in a string, double the
character; for example, use ## to represent a single # character.

The need to escape the single- and double-quotation marks is context-sensitive. Inside a
double-quoted string, you do not need to escape single-quote (apostrophe) characters.
Inside a single-quoted string, you do not escape double-quote characters.

The following example illustrates escaping special characters, including the use of mixed
single and double quotes.

<{cfset mystring = "We all said ""For He's a jolly good fellow.""">
<{cfset mystring2 = 'Then we said "For She''s a jolly good fellow".'>
<cfoutput>

fmystringibr>

fmystring2f

Here is a pound sign: #Hf
</cfoutput>

The output looks like this:

We all said "For He's a jolly good fellow."
Then we said "For She's a jolly good fellow."
Here is a pound sign: #

Comments 31

Reserved words

As with any programming tool, you cannot use just any word or name for ColdFusion

variables, UDFs and custom tags. You must avoid using any name that can be confused

with a ColdFusion element. In some cases, if you use a word that ColdFusion uses, for

example, a built-in structure name. you can overwrite the ColdFusion data.

The following list indicates words you must not use for ColdFusion variables,

user-defined function names, or custom tag names. While some of these words can be

used safely in some situations, you can prevent errors by avoiding them entirely. For a

complete list of reserved words, see CEML Reference.

e Built-in function names, such as Now or Hash

¢ Scope names, such as Form or Session

¢ Any name starting with cf. However, when you call a CFML custom tag directly, you
prefix the custom tag page name with cf_.

¢ Operators, such as NE or IS

o The names of any built-in data structures, such as Error or File

e The names of any built-in variables, such as RecordCount or CGI variable names

o CFScript language element names such as for, default, or continue

You must also not create form field names ending in any of the following, except to

specify a form field validation rule using a hidden form field name. (For more

information on form field validation, see “Validating form field data types,” in

Chapter 26.)

e _integer

e float
e _range
e _date
e _time

e _curodate

Remember that ColdFusion is not case-sensitive. For example, all of the following are
reserved words: IS, TIs, iS, and is.

32 Chapter 2 Elements of CFML

CHAPTER 3
Using ColdFusion Variables

This chapter provides detailed information on ColdFusion variables and their use.
ColdFusion variables are the most frequently used operands in ColdFusion expressions.
Variable values can be set and reset, and can be passed as attributes to CFML tags.
Variables can be passed as parameters to functions, and can replace most constants.

This chapter describes how to create and use variables. It provides information on how
variables can represent different types of data and how the data types get converted. It
also discusses how variables exists in different scopes and provides an introduction to how
the scopes are used. Finally, it provides additional information required to use variables
correctly.

Contents

o Creating variablesccoveireirieiniciiencccee e 34
¢ Variable CharaCteriSticsoveiruiriruiririiieiirieieee ettt 35
® DA EYPES ceinriiiiiieieetiteet e et s et 35
o Using periods in variable references........cooeeuveineinieinieninenneineneeneeeeeeeenne 45
® DAala [YPE COMVEISION Lutitiniiiniiiaietitetertet ettt ettt ettt ettt sttt 49
© ADOUE SCOPES...vvitieritiaietet ettt ettt ettt ettt 55
o Ensuring variable exiStenceoeovvuiieiinieiniiiieicc e 60
o Validating data types........ccceiiiiiiiiiiiiiccccc e 62
o Passing variables to custom tags and UDFs.........cccccoviiiiniiiiniiiiiice, 64

33

Creating variables

You create most ColdFusion variables by assigning them values. (You must use the
ArrayNew function to create arrays.) Most commonly, you create variables by using the
cfset tag. You can also use the cfparam tag, and assignment statements in CFScript. Tags
that create data objects also create variables. For example, the cfquery tag creates a query
object variable.

ColdFusion automatically creates some variables that provide information about the
results of certain tags or operations. ColdFusion also automatically generates variables in
certain scopes, such as Client and Server. For information on these special variables, see

CFML Reference and the documentation of the CFML tags that create these variables.

ColdFusion generates an error when it tries to use a variable before it is created. This can
happen, for example, when processing data from an incompletely filled form. To prevent
such errors, test for the variable’s existence before you use it. For more information on
testing for variable existence, see “Ensuring variable existence” on page 60.

For more information on how to create variables, see “Creating and using variables in

scopes” on page 57.

Variable naming rules

Variable names must conform to Java naming rules. When naming ColdFusion variables

and form fields, follow these guidelines:

o A variable name must begin with a letter, underscore, or Unicode currency symbol.

o The initial character can by followed by any number of letters, numbers, and
underscore characters. Unicode currency symbols are also allowed.

e A variable name cannot contain spaces.

e A query result is a type of variable, so it cannot have the same name as another local
variable in the current ColdFusion application page.

¢ ColdFusion variables are not case-sensitive. However, consistent capitalization makes
the code easier to read.

e When creating a form with fields that are used in a query, match form field names
with the corresponding database field names.

o Prefix each variable’s name with its scope. Although some ColdFusion programmers
do not use the Variables prefix for local variable names, you should use prefixes for all
other scopes. Using scope prefixes makes variable names clearer and increases code
efficiency. In some cases, you must prefix the scope. For more information, see
“About scopes” on page 55.

o Periods separate the components of structure or object names. They also separate a
variable scope from the variable name. You cannot use periods in simple variable
names, with the exception of variables in the Cookie and Client scopes. For more
information on using periods, see “Using periods in variable references” on page 45

Note: Insome cases, when you use an existing variable name, you must put pound signs (#)

around the name to allow ColdFusion to distinguish it from string or HTML text, and to insert

its value, as opposed to its name. For more information, see the section “Using pound signs,”
in Chapter 4.

34

Chapter 3 Using ColdFusion Variables

Variable characteristics

You can classify a variable using the following characteristics:

e The data type of the variable value, which indicates the kind of information a variable
represents, such as number, string, or date

o The scope of the variable, which indicates where the information is available and how
long the variable persists

The following sections provide detailed information on Data types and scopes.

Data types

ColdFusion is often referred to as typeless because you do not assign types to variables
and ColdFusion does not associate a type with the variable name. However, the data that
a variable represents does have a type, and the data type affects how ColdFusion evaluates
an expression or function argument. ColdFusion can automatically convert many data
types into others when it evaluates expressions. For simple data, such as numbers and
strings, the data type is unimportant until the variable is used in an expression or as a
function argument.

ColdFusion variable data belongs to one of the following type categories:

e Simple One value. ColdFusion simple data types include numbers, strings,
Booleans, and date-time variables. You can use simple data types directly in
ColdFusion expressions.

e Complex A container for data. Complex variables generally represent more than
one value. ColdFusion built-in complex data types include arrays, structures, queries,
and XML document objects.

You cannot use a complex variable, such as an array, directly in a ColdFusion
expression, but you can use simple data type elements of a complex variable in an
expression.

For example, with a one-dimensional array of numbers called myArray, you cannot
use the expression myArray * 5. However, you could use an expression myArray[3] *
5 to multiply the third element in the array by five.

e Binary Raw data, such as the contents of a GIF file or an executable program file.
¢ Objects Complex constructs. Often, objects encapsulate both data and functional

operations. The following table lists the types of objects that ColdFusion can use, and
identifies the chapters that describe how to use them:

Object type See

Component Object Model Chapter 33, “Integrating COM and CORBA Objects in
(COM) CFML Applications” on page 785

Common Object Request Chapter 33, “Integrating COM and CORBA Objects in

Broker Architecture (CORBA) CFML Applications” on page 785

Java Chapter 32, “Integrating J2EE and Java Elements in
CFML Applications” on page 759

Variable characteristics 35

Numbers

Object type See

ColdFusion component Chapter 11, “Building and Using ColdFusion
Components” on page 217

Web service Chapter 31, “Using Web Services” on page 729

Data type notes

Although ColdFusion variables do not have types, it is often convenient to refer to a
variable’s type as a shorthand for the type of data that the variable represents.

ColdFusion can validate the type of data contained in form fields and query parameters.
Form more information on form field data type validation, see “Validating form field
data types,” in Chapter 26. For more information on query parameter validation, see
“Using cfqueryparam,” in Chapter 20.

The cfdump tag displays the entire contents of a variable, including ColdFusion complex
data structures. It is an excellent tool for debugging complex data and the code that
handles it.

ColdFusion provides the following functions for identifying the data type of a variable:

o IsArray

e IsBinary

e IsBoolean

o IsObject

o IsQuery

o IsSimpleValue
e IsStruct

o IsXMLDoc

ColdFusion also includes the following functions for determining whether a string can be
represented as another simple data type:

e IsDate

o IsNumeric

ColdFusion does not use a null data type. However, if ColdFusion receives a null value
from an external source such as a database, a Java object, or some other mechanism, it
maintains the null until you use it as a simple value. At that time, ColdFusion converts
the null to an empty string ("").

ColdFusion supports integers and real numbers. You can intermix integers and real
numbers in expressions; for example, 1.2 + 3 evaluates to 4.2.

36 Chapter 3 Using ColdFusion Variables

Integers

Real numbers

Strings

ColdFusion supports integers between -2,147,483,648 and 2,147,483,647 (32-bit
signed integers). You can assign a value outside this range to a variable, but ColdFusion
initially stores the number as a string. If you use it in an arithmetic expression,
ColdFusion converts it into a floating point value, preserving its value, but losing
precision as the following example shows:

<cfset mybignum=12345678901234567890>

<cfset mybignumtimesl0=(mybignum * 10)>

<cfoutput>mybignum is: #mybignumft</cfoutput>

<cfoutput>mybignumtimes10 is: ffmybignumtimes10s </cfoutput>

This code generates the following output:

mybignum is: 12345678901234567890
mybignumtimes10 is: 1.23456789012E+020

Real numbers, numbers with a decimal part, are also known as floating point numbers.
ColdFusion real numbers can range from approximately -10390 to approximately 10300,
A real number can have up to 12 significant digits. As with integers, you can assign a
variable a value with more digits, but the data is stored as a string. The string is converted
to a real number, and can lose precision, when you use it in an arithmetic expression.

You can represent real numbers in scientific notation. This format is XEy, where x is a
positive or negative real number in the range 1.0 (inclusive) to 10 (exclusive), and y is an
integer. The value of a number in scientific notation is x times 10Y. For example, 4.0E2 is
4.0 times 102> which equals 400. Similarly, 2.5E-2 is 2.5 times 10-2, which equals 0.025.
Scientific notation is useful for writing very large and very small numbers.

In ColdFusion, text values are stored in strings. You specify strings by enclosing them in
either single or double quotation marks. For example, the following two strings are
equivalent:

"This is a string”

"This is a string’

You can write an empty string in the following ways:
-

. (a pair of double quotation marks with nothing in between)
e " (a pair of single quotation marks with nothing in between)

Strings can be any length, limited by the amount of available memory on the ColdFusion
Server. There is, however, a 64K limit on the size of text data that can be read from and
written to a ColdFusion database or HTML text area. The ColdFusion Administrator
lets you increase the limit for database string transfers, but doing so can reduce server
performance. To change the limit, select the Enable retrieval of long text option on the
Advanced Settings page for the data source.

Data types 37

Booleans

Escaping quotes and pound signs

To include a single-quotation character in a string that is single-quoted, use two single
quotation marks (known as escaping the single quotes). The following example uses
escaped single quotes:

<cfset myString='This is a single quote: '' This is a double quote: "'>
<cfoutput>ffmystringif</cfoutput>

To include a double-quote character in a double-quoted string, use two double quotes
(known as escaping the double quote). The following example uses escaped double
quotes:

<cfset myString="This is a single quote: ' This is a double quote: """>
<cfoutput>ffmystring#</cfoutput>

Because strings can be in either double quotes or single quotes, both of the preceding
examples display the same text:

This is a single quote: ' This is a double quote: "

Note: Toinserta pound sign in a string, you must escape the pound sign, as in:
"This is a pound sign 4"

Lists

ColdFusion includes functions that operate on lists, but it does not have a list data type.
In ColdFusion, a list is just a string that consists of multiple entries separated by
delimiter characters.

The default delimiter for lists is the comma. If you use any other character to separate list
elements, you must specify the delimiter in the list function. You can also specify
multiple delimiter characters. For example, you can tell ColdFusion to interpret a comma
or a semicolon as a delimiter, as the following example shows:

<{cfset MylList="1,2;3,4;5">

<cfoutput>

List Tength using ; and , as delimiters: #listlen(Mylist, ";,")Kbr>

List Tength using only , as a delimiter: #listlen(Mylist)#br>

</cfoutput>

This example displays the following output:

List length using ; and , as delimiters: 5

List length using only , as a delimiter: 3

Each delimiter must be a single character. For example, you cannot tell ColdFusion to
require two hyphens in a row as a delimiter.

If a list has two delimiters in a row, ColdFusion ignores the empty element. For example,

if MyList is "1,2,,3,,4,,,5" and the delimiter is the comma, the list has five elements and
list functions treat it the same as "1,2,3,4,5".

A Boolean value represents whether something is true or false. ColdFusion has two
special constants—True and False— to represent these values. For example, the Boolean
expression 1 IS 1 evaluates to True. The expression "Monkey" CONTAINS "Money"
evaluates to False.

38 Chapter 3 Using ColdFusion Variables

You can use Boolean constants directly in expressions, as in the following example:
{cfset UserHasBeenHere = True>

In Boolean expressions, True, nonzero numbers, and the string “Yes” are equivalent, and
False, 0, and the string “No” are equivalent.

Boolean evaluation is not case-sensitive. For example, True, TRUE, and true are
equivalent.

Date-Time values

ColdFusion can perform operations on date and time values. Date-time values identify a
date and time in the range 100 AD to 9999 AD. Although you can specify just a date or
a time, ColdFusion uses one data type representation, called a date-time object, for date,
time, and date and time values.

ColdFusion provides many functions to create and manipulate date-time values and to
return all or part of the value in several different formats.

You can enter date and time values directly in a cfset tag with a constant as follows:
<{cfset myDate = "October 30, 2001">

When you do this, ColdFusion stores the information as a string. If you use a date-time
function, ColdFusion stores the value as a date-time object, which is a separate simple
data type. When possible, use date-time functions such as CreateDate and CreateTime to
specify dates and times, because these functions can prevent you from specifying the date
or time in an invalid format and they create a date-time object immediately.

Date and time formats

You can directly enter a date, time, or date and time, using standard U.S. date formats.
ColdFusion processes the two-digit-year values 0 to 29 as twenty-first century dates; it
processes the two-digit-year values 30 to 99 as twentieth century dates. Time values are
accurate to the second. The following table lists valid date and time formats:

To specify Use these formats

Date October 30, 2001
Oct 30, 2001
Oct. 30, 2001
10/30/01
2001-10-30

10-30-2001

Data types 39

To specify Use these formats

Time 02:34:12
2:34a
2:34am
02:34am
2am

Date and Time Any combination of valid date and time formats, such as these:

October 30, 2001 02:34:12
Oct 30, 20012:34a

Oct. 30, 2001 2:34am
10/30/102:34am
2001-10-30 2am

10-30-2001 2am

Locale-specific dates and times

ColdFusion provides several functions that let you input and output dates and times (and
numbers and currency values) in formats that are specific to the current locale. A locale
identifies a language and locality, such as English (US) or French (Swiss). Use these
functions to input or output dates and times in formats other than the U.S. standard
formats. (Use the Setlocale function to specify the locale.) The following example shows
how to do this:

<{cfset oldlocale = Setlocale("French (Standard)")>
<cfoutput>fLSDateFormat(Now(), "ddd, mmmm dd, yyyy")#</CFOUTPUT>

This code outputs a line like the following:
ven., juin 15, 2001

For more information on international functions, see CFML Reference.

How ColdFusion stores dates and times

ColdFusion stores and manipulates dates and times as date-time objects. Date-time
objects store data on a time line as real numbers. This storage method increases
processing efficiency and directly mimics the method used by many popular database
systems. In date-time objects, one day is equal to the difference between two successive
integers. The time portion of the date-and-time value is stored in the fractional part of
the real number. The value 0 represents 12:00 AM 12/30/1899.

Although you can use arithmetic operations to manipulate date-and-time values directly,
this method can result in code that is difficult to understand and maintain. Use the
ColdFusion date-time manipulation functions instead.

Binary data type and Base64 encoding

Binary data is raw data, such as the contents of a GIF file or an executable program file.
You do not normally use binary data directly, but you can use the cffile tag to read a
binary file into a variable, typically for conversion to Base64 encoding before
transmitting the file by e-mail.

40

Chapter 3 Using ColdFusion Variables

Base64 format encodes the data in the lowest six bits of each byte. It ensures that binary
data and non-ANSI character data can be transmitted by e-mail without corruption. The
MIME specification defines the Base64 encoding method.

ColdFusion does not have a Base64 data type; it processes Base64 encoded data as string
data.

ColdFusion provides the following functions that convert among string data, binary data,
and Base64 encoded string data:

Function Description

ToBase64 Converts string and binary data to Base64 encoded data.
ToBinary Converts Base64 encoded data to binary data.
ToString Converts most simple data types to string data. It can convert numbers,

date-time objects, and boolean values. (It converts date-time objects to
ODBC timestamp strings.) It cannot convert binary data that includes bytes
that are not printable characters.

The ToString function cannot convert Base64 encoded data directly to an unencoded
string. Use the following procedure to convert Base64 encoded data that was originally a
string back to a readable string:

1 Use the ToBinary function to convert the Base64 data into binary format.
2 Use the ToString function to convert the binary data to string.

For example, the following two lines print the same results:

<cfoutput>This is a test</cfoutput>
<cfoutput>#ToString(ToBinary(ToBase64("This is a test")))#</cfoutput>

Do not use binary data or Base64 data directly in ColdFusion expressions.

Complex data types

Arrays

Arrays, structures, and queries are ColdFusion built-in complex data types. Structures
and queries are sometimes referred to as objects, because they are containers for data, not
individual data values.

For details on using arrays and structures, see Chapter 5, “Using Arrays and Structures”
on page 87.

Arrays are a way of storing multiple values in a table-like format that can have one or
more dimensions. To create an array and specify its initial dimensions, use the
ColdFusion ArrayNew function. For example, the following line creates an empty
two-dimensional array:

<{cfset myarray=ArrayNew(2)>

You reference elements using numeric indexes, with one index for each dimension. For
example, the following code sets one element of a two-dimensional array to the current
date and time.

Data types 41

Structures

<cfset myarray[11[2]=Now()>

The ArrayNew function can create arrays with up to three dimensions. However, there is
no limit on array size or maximum dimension. To create arrays with more than three
dimensions, create arrays of arrays.

After you create an array, you can use functions or direct references to manipulate its
contents.

When you assign an existing array to a new variable, ColdFusion creates a new array and
copies the old array’s contents to the new array. The following example creates a copy of
the original array:

<cfset newArray=myArray>

For more information on using Arrays, see Chapter 5, “Using Arrays and Structures” on
page 87.

ColdFusion structures consist of key-value pairs, where the keys are text strings and the
values can be any ColdFusion data type, including other structures. Structures let you
build a collection of related variables that are grouped under a single name. To create a
structure, use the ColdFusion StructNew function. For example, the following line creates
a new, empty, structure called depts:

<cfset depts=StructNew()>

You can also create a structure by assigning a value in the structure. For example, the
following line creates a new structure called MyStruct with a key MyValue equal to 2.

<{cfset MyStruct.MyValue=2>

Note: In previous ColdFusion versions, this line created a Variables scope variable named
"MyStruct.MyValue" with the value 2.

After you create a structure, you can use functions or direct references to manipulate its
contents, including adding key/value pairs.

You can use cither of the following methods to reference elements stored in a structure:
o StructureName.KeyName

o StructureName[" KeyName"

The following examples show these methods:

depts.John="Sales"

depts["John"]="Sales"

When you assign an existing structure to a new variable, ColdFusion does 7oz create a
new structure. Instead, the new variable accesses the same data (location) in memory as
the original structure variable. In other words, both variables are references to the same
object.

For example, the following code creates a new variable myStructure2 that references the
same structure as the myStructure variable:

<CFSET myStructure2=myStructure>

42 Chapter 3 Using ColdFusion Variables

Queries

When you change the contents of myStructure2, you also change the contents of
myStructure. To copy the contents of a structure, use the ColdFusion Duplicate
function, which copies the contents of structures and other complex data types.

Structure key names can be the names of complex data objects, including structures or
arrays. This lets you create arbitrarily complex structures.

For more information on using Structures, see Chapter 5, “Using Arrays and Structures”
on page 87.

A query object, sometimes referred to as a query, query result, or record set, is a complex
ColdFusion data type that represents data in a set of named columns, similar to the
columns of a database table. The following ColdFusion tags can create query objects:

e cfquery

e cfdirectory
e cfhttp

e cfldap

e cfpop

e cfprocresult

In these tags, the name attribute specifies the query object’s variable name. The QueryNew
function also creates queries.

When you assign a query to a new variable, ColdFusion does 7oz copy the query object.
Instead, both names point to the same record set data. For example, the following code
creates a new variable myQuery?2 that references the same record set as the myQuery
variable.

<CFSET myQuery2 = myQuery>
If you make changes to data in myQuery, myQuery2 also shows those changes.

You reference query columns by specifying the query name, a period, and the column
name; for example:

myQuery.Dept_ID

When you reference query columns inside tags, such as cfoutput and cfloop, in which
you specify the query name in a tag attribute, you do not have to specify the query name.

You can access query columns as if they are one-dimensional arrays. For example, the
following code assigns the contents of the second row of the Employee column in the
myQuery query to the variable myVar:

<CFSET myVar = myQuery.Employee[21>

You cannot use array notation to refer to a row (of all columns) of a query.

Data types 43

Working with structures and queries

Because structure variables and query variables are references to objects, the rules in the
following sections apply to both types of data.

Multiple references to an object

When multiple variables refer to a structure or query object, the object continues to exist
as long as at least one reference to the object exists. The following example shows how
this works:
<cfscript> depts = structnew();</cfscript>
<{cfset newStructure=depts>
<cfset depts.John="Sales">
<cfset depts=0>
<cfoutput>
ffnewStructure.Johnibr>

fideptsi
</cfoutput>

This example displays the following output:

Sales
0

After the <cfset depts=0> tag executes, the depts variable does not refer to a structure; it
is a simple variable with the value 0. However, the variable newStructure still refers to the
original structure object.

Assigning objects to scopes

You can give a query or structure a different scope by assigning it to a new variable in the
other scope. For example, the following line creates a server variable,
Server.SScopeQuery, using the local myquery variable:

<CFSET Server.SScopeQuery = myquery>
To clear the server scope query variable, reassign the query object, as follows:
<CFSET Server.SScopeQuery = 0>

This deletes the reference to the object from the server scope, but does not remove any
other references that might exist.

Copying and duplicating objects

You can use the Duplicate function to make a true copy of a structure or query object.
Changes to the copy do not affect the original.

Using a query column

When you are not inside a cfloop, cfoutput, or cfmail tag that has a query attribute, you
can treat a query column as an array. However, query column references do not always
behave as you might expect. This section explains the behavior of references to query
columns using the results of the following cfquery tag in its examples:

44

Chapter 3 Using ColdFusion Variables

<cfquery dataSource="CompanyInfo" name="myQuery">

SELECT FirstName, LastName

FROM Employee
</cfquery>
To reference elements in a query column, use the row number as an array index. For
example, both of the following lines display the word "ben":
<cfoutput> myQuery.Firstname[1]# </cfoutput>

<cfoutput> #fmyQuery["Firstname"I[11# </cfoutput>

ColdFusion behavior is less straightforward, however, when you use the query column
references myQuery.Firstname and myQuery["Firstname"] without using an array index;
as the two reference formats produce different results.

Here are the rules for these references:

If you refer to myQuery.Firstname, ColdFusion automatically converts it to the first row
in the column. For example, the following line prints outs the word "ben":

<cfset myCol = myQuery.Firstname >
<cfoutput>ffmycolf</cfoutput>

But the following lines display an error message:

<cfset myCol = myQuery.Firstname >
<cfoutput>ffmycol [1]4</cfoutput>

If you refer to Query["Firstname"], ColdFusion does not automatically convert it to the
first row of the column. For example, the following line results in an error message
indicating that ColdFusion cannot convert a complex type to a simple value:

<cfoutput> #myQuery['Firstname' J# </cfoutput>

Similarly, the following code prints out the name "marjorie”, the value of the second row
in the column

<cfset myCol = myQuery["Firstname"]>
<cfoutput>ffmycol [2]#</cfoutput>

However, when you make an assignment that requires a simple value, ColdFusion
automatically converts the query column to the value of the first row. For example, the
following code displays the name "ben":

<cfoutput> #fmyQuery.Firstnameft </cfoutput>

<cfset myVar= myQuery['Firstname' 1>
<cfoutput> fmyVarf </cfoutput>

Using periods in variable references

ColdFusion uses the period (.) to separate elements of a complex variable such as a
structure, query, XML document object, or external object, as in MyStruct.KeyName. A
period also separates a variable scope identifier from the variable name, as in
Variables.myVariable or CGL.HTTP_COOKIE.

With the exception of Cookie and Client scope variables (which must always be simple

variable types), you cannot normally include periods in simple variable names. However,
ColdFusion makes some exceptions that accommodate legacy and third-party code that
does not conform to this requirement.

Using periods in variable references 45

Note: For more information on scopes, see “About scopes” on page 55. For more
information on references to arrays and structures, see Chapter 5, “Using Arrays and
Structures” on page 87. For more information on references to XML document objects, see
Chapter 30, “Using XML and WDDX” on page 687.

Understanding variables and periods

The following descriptions use a sample variable named MyVar.a.b to explain how
ColdFusion uses periods when getting setting the variable value.

Getting a variable

ColdFusion can correctly get variable values even if a simple variable name includes a
period. For example, the following set of steps shows how ColdFusion gets MyVar.a.b, as
in <cfset Var2 = myVar.a.b> or IsDefined(myVar.a.b):

1 Looks for myVar in an internal table of names (the symbol table).

2 If myVar is the name of a complex object, including a scope, looks for an element
named a in the object.
If myVar is not the name of a complex object, it checks whether myVar.a is the name
of a complex object and skips step 3.

3 If myVar is the name of a complex object, it checks whether a is a complex object,

If a or myVar.a is the name of a complex object, it checks whether b is the name of a
simple variable, and returns the value of b.

If myVar is a complex object but a is not a complex object, it checks whether a.b is
the name of a simple variable and returns its value.

If myVar.a is not a complex object, it checks whether myVar.a.B is the name of a
simple variable and returns its value.

This way, even if myVar.a.b is a simple variable name, ColdFusion correctly resolves the
variable name and can get its value.

You can also use array notation to get a simple variable with a name that includes periods.
In this form of array notation, you use the scope name (or the complex variable that
contains the simple variable) as the “array” name. You put the simple variable name, in
single or double quotation marks, inside the square bracket.

Using array notation is more efficient than using plain dot notation because ColdFusion
does not have to analyze and look up all the possible key combinations. For example,
both of the following lines write the value of myVar.a.b, but the second line is more
efficient than the first:

<cfoutput>myVar.a.b is: fmyVar.a.bfKbr></cfoutput>
<cfoutput>myVar.a.b is: #Variables["myVar.a.b"J#Kbr></cfoutput>

Setting a variable

ColdFusion cannot be as flexible when it sets a variable value as when it gets a variable,
because it must determine the type of variable to create or set. Therefore, the rules for
variable names that you set are stricter. Also, the rules vary depending on whether or not
the first part of the variable name is the Cookie or Client scope identifier.

46

Chapter 3 Using ColdFusion Variables

For example, assume you have the following code:
{cfset myVar.a.b = "This is a test">

If a variable myVar does not exist, it creates a structure named myVar, creates a structure
named a in the structure myVar, creates a key named b in myVar.a, and gives it the value
"This is a test". If either myVar or myVar.a exist and is not a structure, ColdFusion
generates an error.

In other words, ColdFusion uses the same rules as in the Getting a variable section to
resolve the variable name until it finds a name that does not exist yet. It then creates any
structures that are needed to create a key named b inside a structure, and assigns the value
to the key.

However, if the name before the first period is either Cookie or Client, ColdFusion uses a
different rule. It treats all the text. including any periods, that follow the scope name as
the name of a simple variable, because Cookie and Client scope variables must be simple.
As a result if you have the following code, you see that ColdFusion creates a single, simple
Client scope variable named myVar.a.b:

<cfset Client.myVar.a.b = "This is a test">
<cfdump var=ffClient.myVar.a.bip>

Creating variables with periods

You should avoid creating the names of simple variables (including arrays) that include
periods. However, ColdFusion provides mechanisms for handling cases where you must
do so, for example, to maintain compatibility with names of variables in external data
sources or to integrate your application with existing code that uses periods in variable
names. The following sections describe how to create simple variable names that include

periods.

Using brackets to create variables with periods

You can create a variable name that includes periods by using associative array structure
notation, as described in “Structure notation,” in Chapter 5. To do so, you must do the
following:

o Refer to the variable as part of a structure. You can always do this, because
ColdFusion considers all scopes to be structures. For more information on scopes, see
“About scopes” on page 55

o DPut the variable name that must include a period inside square brackets and single or
double quotation marks,

The following example shows this technique:

<cfset Variables['My.Variable.With.Periods'] = 12>
<{cfset Request["Another.Variable.With.Periods"] = "Test variable">
<cfoutput>
My.Variable.With.Periods is: #My.Variable.With.Periodsibr>
Request.Another.Variable.With.Periods is:
ffRequest.Another.Variable.With.Periodsf

</cfoutput>

Using periods in variable references 47

Creating Client and Cookie variables with periods

To create a Client or Cookie variable with a name that includes one or more periods,

simply assign the variable a value. For example, the following line creates a Cookie named
User.Preferences.CreditCard:

<{cfset Cookie.User.Preferences.CreditCard>

48 Chapter 3 Using ColdFusion Variables

Data type conversion

ColdFusion automatically converts between data types to satisfy the requirements of an
expression’s operations, including a function’s argument requirements. As a result, you
generally don’t need to be concerned about compatibility between data types and the
conversions from one data type to another. However, understanding how ColdFusion
evaluates data values and converts data between types can help you prevent errors and
code more effectively.

Operation-driven evaluation

Conventional programming languages enforce strict rules about mixing objects of
different types in expressions. For example, in a language such as C++ or Basic, the
expression ("8" * 10) produces an error because the multiplication operator requires two
numerical operands and "8" is a string. When you program in such languages, you must
convert between data types to ensure error-free program execution. For example, the
previous expression might have to be written as (ToNumber("8") * 10).

In ColdFusion, however, the expression ("8" * 10) evaluates to the number 80 without
generating an error. When ColdFusion processes the multiplication operator, it
automatically attempts to convert its operands to numbers. Since "8" can be successfully
converted to the number 8, the expression evaluates to 80.

ColdFusion processes expressions and functions in the following sequence:

1 For each operator in an expression, it determines the required operands. (For
example, the multiplication operator requires numeric operands and the
CONTAINS operator requires string operands.)

For functions, it determines the type required for each function argument. (For
example, the Min function requires two numbers as arguments and the Len function
requires a string.)

2 It evaluates all operands or function arguments.

It converts all operands or arguments whose types differ from the required type. If a
conversion fails, it reports an error.

Conversion between types

Although the expression evaluation mechanism in ColdFusion is very powerful, it cannot
automatically convert all data. For example, the expression "eight" * 10 produces an
error because ColdFusion cannot convert the string "eight” to the number 8. Therefore,
you must understand the rules for conversion between data types.

The following table explains how conversions are performed. The first column shows
values to convert. The remaining columns show the result of conversion to the listed data

type.

Value As Boolean As number As date-time As string
"Yes" True 1 Error "Yes"
"No" False 0 Error "No"

Data type conversion 49

Value As Boolean As number As date-time As string
True True 1 Error "Yes"
False False 0 Error "No"
Number True if Number Number See “Date-time values” String

is not O, False
otherwise.

String
or if the string
can be
converted to a
number, it is
treated as
listed above.

Date Error

If"Yes" or "No",

If it represents a
number (for

example, "1,000"
or "12.36E-12"), it

is converted to
the
corresponding
number. If it
represents a
date-time (see

next column), it is

converted to the
numeric value of
the
corresponding

date-time object.

The numeric value

of the date-time
object.

earlier in this chapter.

If itis an ODBC date, time,
or timestamp (for example
"{ts '2001-06-14
1:30:13Y", orifitis
expressed in a standard
US date or time format,
including the use of full or

abbreviated month names,

it is converted to the
corresponding date-time
value.

Days of week or unusual
punctuation result in error.

Dashes, forward-slashes,
and spaces are generally
allowed.

Date

representation
of the number.

String

An ODBC
timestamp.

ColdFusion cannot convert complex types, such as arrays, queries, and COM objects to
other types. However, it can convert simple data elements of complex types to other

simple data types.

Type conversion notes

The following sections detail specific rules and considerations for converting between

types.

The cfoutput tag

The cfoutput tag always displays data as a string. As a result, when you display a variable
using the cfoutput tag, ColdFusion applies the type conversion rules to any non-string
data before displaying it. For example, the cfoutput tag displays a date-time value as an

ODBC timestamp.

Case-insensitivity and Boolean conversion

Because ColdFusion expression evaluation is not case-sensitive, Yes, YES, and yes are
equivalent; False, FALSE, and false are equivalent; No, NO, and no are equivalent; and
True, TRUE, and true are equivalent.

50

Chapter 3 Using ColdFusion Variables

Converting binary data

ColdFusion cannot automatically convert binary data to other data types. To convert
binary data use the ToBase64 and ToString functions. For more information, see “Binary
data type and Base64 encoding” on page 40.

Converting date and time data

To ensure that a date and time value is expressed as a real number, add zero to the
variable. The following example shows this:

<cfset mynow = now()>

Use cfoutput to display the result of the now function:

<cfoutput>ffmynowft</cfoutput>

Now add 0 to the result and display it again:

<cfset mynow = mynow + 0>

<cfoutput>ffmynowft</cfoutput>

At 5:34 PM on November 7, 2001, its output looked like this:

Using cfoutput to display the result of the now function:
{ts '2001-11-07 17:34:01'}

Now Add 0 to the result and display it:

37202.731956

Converting numeric values

When ColdFusion evaluates an expression that includes both integers and real numbers,
the result is a real number. To convert a real number to an integer, use a ColdFusion
function. The Int, Round, Fix, and Ceiling functions convert real numbers to integers,
and differ in their treatment of the fractional part of the number.

If you use a hidden form field with a name that has the suffix _integer or _range to
validate a form input field, ColdFusion truncates real numbers entered into the field and
passes the resulting integer to the action page.

If you use a hidden form field with a name that has the suffix _integer, _float, or _range
to validate a form input field, and the entered data contains a dollar amount (including a
dollar sign) or a numeric value with commas, ColdFusion considers the input to be valid,
removes the dollar sign or commas from the value, and passes the resulting integer or real
number to the action page.

Evaluation and type conversion issues

The following sections explain several issues that you might encounter with type
evaluation and conversion.

Comparing variables to True or False

You might expect the following two cfif tags to produce the same results:

<cfif myVariable>
<cfoutput>myVariable equals ffmyVariable# and is True
</cfoutput>

</cfif>

Data type conversion 51

<cfif myVariable IS True>

<cfoutput>myVariable equals #fmyVariable# and is True

</cfoutput>
</cfif>
However, if myVariable has a numeric value such as 12, only the first example produces a
result. In the second case, the value of myVariable is not converted to a Boolean data
type, because the IS operator does not require a specific data type and just tests the two
values for identity. Therefore, ColdFusion compares the value 12 with the constant True.
The two are not equal, so nothing is printed. If myVariable is 1, "Yes", or True, however,
both examples print the same result, because ColdFusion considers these to be identical
to Boolean True.

If you use the following code, the output statement does display, because the contents of
the variable, 12, is not equal to the Boolean value False.
<cfif myVariable IS NOT False>

<cfoutput>myVariable equals ffmyVariableff and IS NOT False

</cfoutput>
</cfif>
As a result, you should use the test <cfif testvariable>, and not use the IS comparison
operator when testing whether a variable is True or False. This issue is a case of the more
general problem of ambiguous type expression evaluation, described in the following
section.

Ambiguous type expressions and strings

When ColdFusion evaluates an expression that does not require strings, including all
comparison operations, such as IS or GT, it checks whether it can convert each string value
to a number or date-time object. If so, ColdFusion converts it to the corresponding
number or date-time value (which is stored as a number). It then uses the number in the
expression.

Short strings, such as 1a and 2P, can produce unexpected results. ColdFusion can
interpret a single "a" as AM and a single "P" as PM. This can cause ColdFusion to
interpret strings as date-time values in cases where this was not intended.

Similarly, if the strings can be interpreted as numbers, you might get unexpected results.

For example, ColdFusion interprets the following expressions as shown:

Expression Interpreted as

<cfif "la" EQ "01:00"> If 1:00am is 1:00am.

{cfif "1P" GT "2A"> If 1:00pm is later than 2:00am.

{cfset age="4a"> Treat the variable age as 4:00 am, convert it to the

<cfset age=age + 7> date-time value 0.16666666667, and add 7 to make it
7.16666666667.

<cfif "0.0" is "0"> IfOisO.

To prevent such ambiguities when you compare strings, use the ColdFusion string
comparison functions Compare and CompareNoCase, instead of the comparison operators.

52 Chapter 3 Using ColdFusion Variables

You can also use the IsDate function to determine whether a string can be interpreted as a
date-time value, or to add characters to a string before comparison to avoid incorrect
interpretation.

Date-time functions and queries when ODBC is not supported

Many CEML functions, including the Now, CreateDate, CreateTime, and CreateDateTime
functions, return date-time objects. ColdFusion creates Open Database Connectivity
(ODBC) timestamp values when it converts date-time objects to strings. As a result, you
might get unexpected results when using dates with a database driver that does not
support ODBC escape sequences., or when you use SQL in a query of queries.

If you use SQL to insert data into a database or in a WHERE clause to select data from a
database, and the database driver does not support ODBC-formatted dates, use the
DateFormat function to convert the date-time value to a valid format for the driver. This
rule also applies to queries of queries.

For example, the following SQL statement uses the DateFormat function in a query of
queries to select rows that have MyDate values in the future:

<cfquery name="MyQofQQ" dbtype="query">

SELECT *

FROM DateQuery

WHERE MyDate >= 'ffDateFormat(Now())#'

</cfquery>

The following query of queries fails with the error message “Error: {ts is not a valid date,”
because the ColdFusion Now function returns an ODBC timestamp:

<cfquery name="MyQofQQ" dbtype="query">

SELECT *

FROM DateQuery

WHERE MyDate >= 'ffnow()#'
</cfquery>

Using JavaCast with overloaded Java methods

You can overload Java methods so a class can have several identically named methods that
differ only in parameter data types. At runtime, the Java virtual machine (VM) attempts
to resolve the specific method to use, based on the types of the parameters passed in the

call. Because ColdFusion does not use explicit types, you cannot predict which version of
the method the VM will use.

The ColdFusion JavaCast function helps you ensure that the right method executes by
specifying the Java type of a variable, as in the following example:
<{cfset emp.SetJobGrade(JavaCast("int", JobGrade))>

The JavaCast function takes two parameters: a string representing the Java data type and
the variable whose type you are setting. You can specify the following Java data types:
bool, int, long, float, double, and String.

For more information on the JavaCast function, see CEML Reference.

Data type conversion 53

The effect of quotes

To ensure that ColdFusion properly interprets string data, surround strings in single or
double quotes. For example, ColdFusion evaluates “10/2/2001” as a string that can be
converted into a date-time object. However, it evaluates 10/2/2001 as a mathematical
expression, 5/2001, which evaluates to 0.00249875062469.

Examples of type conversion in expression evaluation

The following examples demonstrate ColdFusion expression evaluation.

Example 1
2 * Tr‘ue + HYESH _ (lyl & llesll)
Result value as string: "2"

Explanation: (2*True) is equal to 2; (“YES”- “yes”) is equal to 0; 2 + 0 equals 2.

Example 2
True AND 2 * 3
Result value as string: “YES”

Explanation: 6 is converted to Boolean True because it is nonzero; True AND True is
True.

Example 3
"Five is " & b
Result value as string: “Five is 57

Explanation: 5 is converted to the string “5”.

Example 4

DateFormat("October 30, 2001" + 1)

Result value as string: “31-Oct-01”

Explanation: The addition operator forces the string “October 30, 2001” to be converted
to a date-time object and then to a number. The number is incremented by one. The
DateFormat function requires its argument to be a date-time object; thus, the result of
the addition is converted to a date-time object. One is added to the date-time object,
moving it ahead by one day to October 31, 2001.

54

Chapter 3 Using ColdFusion Variables

About scopes

Variables differ in the source of the data, the places in your code where they are

meaningful, and how long their values persist. These considerations are generally referred

to as a variable’s scope. Commonly used scopes include the Variables scope, the default

scope for variables that you create, and the Request scope, which is available for the

duration of an HTTP request.

Note: User-defined functions also belong to scopes. For more information on user-defined
function scopes see “Specifying the scope of a function,” in Chapter 9.

Scope types

The following table lists the types of ColdFusion scopes and describes their uses:

Scope

Description

Variables
(local)

Form

URL

Attributes

Caller

ThisTag

The default scope for variables of any type that are created with the cfset
and cfparamtags. A local variable is available only on the page on which it is
created and any included pages (see also the Caller scope).

Contains variables passed from a Form page to its action page as the result
of submitting the form. (If you use the HTML formtag, you must use
method="post".) Forinformation on using the Form scope, see Chapter 26,
“Retrieving and Formatting Data” on page 579.

Contains parameters passed to the current page in the URL that is used to
call it. The parameters are appended to the URL in the format
?variablename = value[&variablename=value...]; for example
www.MyCompany.com/inputpage.cfm?productCode=A12CD1510&
quantity=3.

Used only in custom tag pages. Contains the values passed by the calling
page in the custom tag’s attributes. For information on using the Attributes
scope, see Chapter 10, “Creating and Using Custom CFML Tags” on
page 197.

Used only in custom tag pages. The custom tag’s Caller scope is a
reference to the calling page’s Variables scope. Any variables that you
create or change in the custom tag page using the Caller scope are visible
in the calling page’s Variables scope. For information on using the Caller
scope, see Chapter 10, “Creating and Using Custom CFML Tags” on
page 197

Used only in custom tag pages. The ThisTag scope is active for the current
invocation of the tag. If a custom tag contains a nested tag, any ThisTag
scope values you set before calling the nested tag are preserved when the
nested tag returns to the calling tag.

The ThisTag scope includes three built-in variables that identify the tag’s
execution mode, contain the tag’s generated contents, and indicate
whether the tag has an end tag.

A nested custom tag can use the cfassociate tag to return values to the
calling tag’s ThisTag scope. For more information on the ThisTag scope,
see “Accessing tag instance data,” in Chapter 10.

About scopes 55

Scope

Description

Request

Cal

Cookie

Client

Session

Application

Server

Flash

Arguments

Used to hold data that must be available for the duration of one HTTP
request. The Request scope is available to all pages, including custom tags
and nested custom tags, that are processed in response to the request.

This scope is useful for nested (child/parent) tags. This scope can often be
used in place of the Application scope, to avoid the need for locking
variables. Several chapters discuss using the Request scope.

Contains environment variables identifying the context in which a page was
requested. The variables available depend on the browser and server
software. For a list of the commonly used CGl variables, see CFML
Reference.

Contains variables maintained in a user’s browser as cookies. Cookies are
typically stored in a file on the browser, so they are available across browser
sessions and applications. You can create memory-only Cookie variables,
which are not available after the user closes the browser. Cookie scope
variable names can include periods.

Contains variables that are associated with one client. Client variables let
you maintain state as a user moves from page to page in an application,
and are available across browser sessions. By default, Client variables are
stored in the system registry, but you can store them in a cookie or a
database. Client variables cannot be complex data types and can include
periods in their names. For information on using the Client scope, see
Chapter 15, “Using Persistent Data and Locking” on page 315.

Contains variables that are associated with one client and persist only as
long as the client maintains a session. They are stored in the server’s
memory and can be set to time out after a period of inactivity. You cannot
use application variables on server clusters where more than one computer
can process requests from a single session. For information on using the
Session scope, see Chapter 15, “Using Persistent Data and Locking” on
page 315.

Contains variables that are associated with one, named application on a
server. The cfapplication tag name attribute specifies the application
name. For information on using the Application scope, see Chapter 15,
“Using Persistent Data and Locking” on page 315.

Contains variables that are associated with the current ColdFusion Server.
This scope lets you define variables that are available to all your ColdFusion
pages, across multiple applications. For information on using the Server

scope, see Chapter 15, “Using Persistent Data and Locking” on page 315.

Variables sent by a Macromedia Flash movie to ColdFusion and returned
by ColdFusion to the movie. For more information on the Flash scope, see
Chapter 29, “Using the Flash Remoting Service” on page 673.

Variables passed in a call to a user-defined function or ColdFusion
component method. For more information see “About the Arguments
scope,” in Chapter 9.

56

Chapter 3 Using ColdFusion Variables

Scope

Description

This

function local

Variables that are declared inside a ColdFusion component orin a
cffunctiontag thatis not part of a ColdFusion component. These variables

exist only while a function executes.

Contains variables that are declared inside a user-defined function that you

create using CFScript and exist only while a function executes. For
information on using function local variables, see Chapter 9, “Writing and
Calling User-Defined Functions” on page 167.

Caution:

To prevent data corruption, you lock code that uses Session, Application, or

Server scope variables. For more information on using these scopes and locking access to
code, see Chapter 15, “Using Persistent Data and Locking” on page 315.

Creating and using variables in scopes

The following table shows how you create and refer to variables in different scopes in
your code. For more information on the mechanisms for creating variables in most
scopes, see “Creating variables” on page 34.

Scope Prefix

prefix required to

(type) reference Where available Created by

Variables No On the current page. Cannot be Specifying the prefix Variables, or

(Local) accessed by a form’s action page using no prefix, when you create the
(unless the form page is also the action variable.
page). Variables in this scope used on a
page that calls a custom tag can be
accessed in the custom tag by using its
Caller scope; however, they are not
available to any nested custom tags.

Form No On the action page of a form and in A formor cfformtag. Contains the
custom tags called by the action page; values of form field tags (such as
cannot be used on a form page thatis input) in the form body when the form
not also the action page. is submitted. The variable name is the

name of the form field.

URL No On the target page of the URL. The system. Contains the parameters
passed in the URL query string used
to access the page.

Attributes Yes On the custom tag page. The calling page passing the values
to a custom tag page in the custom
tag’s attributes.

Caller On the custom On the custom tag page, by using the On the custom tag page, by

tag page, Yes.

On the calling
page, No
(Variables prefix
is optional).

Caller scope prefix.

On the page that calls the custom tag,
as local variables (Variables scope).

specifying the prefix Caller when you
create the variable.

On the calling page, by specifying the
prefix Variables, or using no prefix,
when you create the variable.

About scopes 57

Scope Prefix

prefix required to

(type) reference Where available Created by

ThisTag Yes On the custom tag page. Specifying the prefix ThisTag when

you create the variable in the tag or
using the cfassociatetagin a nested
custom tag.

Request Yes On the creating page and in any pages Specifying the prefix Request when
invoked during the current HTTP you create the variable.
request after the variable is created,
including in custom tags and nested
custom tags.

CaGl No On any page. Values are specific to the The web server. Contains the server
latest browser request. environment variables that result

from the browser request.

Cookie No For one client in one or more A cfcookietag. You can also set
applications and pages, over multiple memory-only cookies by specifying
browser sessions. the prefix Cookie when you create

the variable.

Client No For one client in one application, over ~ Specifying the prefix Client when you
multiple browser sessions. create the variable.

Session Yes For one client in one application and Specifying the prefix Session when
one browser session. Surround all you create the variable.
code that uses application variables in
cflock blocks.

Application Yes For multiple clients in one application Specifying the prefix Application
over multiple browser sessions. when you create the variable.
Surround all code that uses application
variables in cflock blocks.

Server Yes To any page on the ColdFusion Server. Specifying the prefix Server when
Surround all code that uses server you create the variable.
variables in cflock blocks.

Flash Yes A ColdFusion page or ColdFusion The ColdFusion Client access. You

Arguments No

component called by a flash client

Within the body of a user-defined
function or ColdFusion component
method.

assign a value to Flash.You can
assign values to the Flash.result and
Flash.pagesize variables.

The calling page passing an
argument in the function call.

This Yes Within the body of a user-defined Specifying the prefix This when you
function or ColdFusion component create the variable.
method that was created using the
cffunction tag, only while the function
executes.
(function Prohibited Within the body of a user-defined A var statement in the function body.
local, no function that was created using
prefix) CFScript, only while the function
executes.
58 Chapter 3 Using ColdFusion Variables

Using scopes

The following sections provide details on how you can create and use variables in
different scopes.

Evaluating unscoped variables

If you use a variable name without a scope prefix, ColdFusion checks the scopes in the
following order to find the variable:

Arguments

Variables (local scope)
CGI

URL

Form

Cookie

Client

Because ColdFusion must search for variables when you do not specify the scope, you can
improve performance by specifying the scope for all variables.

N AN N R N =

To access variables in all other scopes, you must prefix the variable name with the scope
identifier.

Scopes and CFX tags

ColdFusion scopes do not apply to CFX tags, custom tags that you write in a
programming language such as C++ or Java. The ColdFusion page that calls a CFX tag
must use tag attributes to pass data to the CFX tag. The CFX tag must use the Java
Request and Response interfaces or the C++ Request class to get and return data.

The Java setVariable Response interface method and C++ CCFX::SetVariable method to
return data to the Variables scope of the calling page. Therefore, they are equivalent to
setting a Caller scope variable in a custom ColdFusion tag.

Using scopes as structures

ColdFusion makes all named scopes available as structures. You cannot access the
function-local scope for UDFs that you define using CFScript as a structure. (In
ColdFusion 4.5 and 5, the following scopes are 7oz available as structures: Variables,
Caller, Client, Server.)

You can reference the variables in these scopes as elements of a structure. To do so, specify
the scope name as the structure name and the variable name as the key. For example, if
you have a MyVar variable in the Request scope, you can refer to either of the following
ways:

Request.MyVar

Request["MyVar"]

About scopes 59

Similarly, you can use CEML structure functions to manipulate the contents of the
scope. For more information on using structures, see Chapter 5, “Using Arrays and
Structures” on page 87.

Caution: Do not call StructClear(Session) to clear session variables. This deletes the
SessionID, CFID, and CFtoken built-in variables, effectively ending the session. If you want to
use StructClear to delete your application variables, put those variables in a structure in the
Session scope, then clear that structure. For example, put all your application variables in
Session.MyVars and then call StructClear(Session.Myvars) to clear the variables.

Ensuring variable existence

ColdFusion generates an error if you try to use a variable value that does not exist.
Therefore, before you use any variable whose value is assigned dynamically, you must
ensure that a variable value exists. For example, if your application has a form, it must use
some combination of requiring users to submit data in fields, providing default values for
fields, and checking for the existence of field variable values before they are used.

There are several ways to ensure that a variable exists before you use it, including:

¢ You can use the IsDefined function to test for the variable’s existence.

¢ You can use the cfparam tag to test for a variable and set it to a default value if it does
not exist.

You can also use a cfform input tag with a hidden attribute to tell ColdFusion to display a

helpful message to any user who does not enter data in a required field. For more

information on this technique, see “Requiring users to enter values in form fields,” in

Chapter 26.

Testing for a variable’s existence

Before relying on a variable’s existence in an application page, you can test to see if it
exists by using the IsDefined function.

For example, if you submit a form with an unsettled check box, the action page does not
get a variable for the check box. The following example from a form action page makes
sure the Contractor check box Form variable exists before using it:
<cfif IsDefined("Form.Contractor")>

<cfoutput>Contractor: ffForm.Contractori</cfoutput>

<fefif>
You must always enclose the argument passed to the IsDefined function in double
quotes. For more information on the IsDefined function, see CFML Reference.

If you attempt to evaluate a variable that you did not define, ColdFusion cannot process
the page and displays an error message. To help diagnose such problems, use the
interactive debugger in ColdFusion Studio or turn on debugging in the ColdFusion
Administrator. The Administrator debugging information shows which variables are
being passed to your application pages.

60

Chapter 3 Using ColdFusion Variables

Variable existence notes

If a variable is part of a scope that is available as a structure, you might get a minor
performance increase by testing the variable’s existence using the StructKeyExists
function instead of the IsDefined function.

You can also determine which Form variables exist by inspecting the contents of the
Form.fieldnames built-in variable. This variable contains a list of all the filed submitted by
the form. Remember, however, that form Text fields are always submitted to the action
page, and may contain an empty string if the user did not enter data.

The IsDefined function always Returns False if you specify an array or structure element
using bracket notation. For example IsDefined("myArray[3]") always returns False, even
if the array element myArray[3] has a value. To check for the existence of an array
element, copy the element to a simple variable and use IsDefined to test whether the
simple variable exists.

Using the cfparam tag

You can ensure that a variable exists by using the cfparam tag, which tests for the variable’s
existence and optionally supplies a default value if the variable does not exist. The
cfparam tag has the following syntax:

<cfparam name="VariableName"

type="data_type"
default="DefaultValue">

Note: Forinformation on using the type attribute to validate the parameter data type, see
CFML Reference.

There are two ways to use the cfparam tag to test for variable existence, depending on how

you want the validation test to proceed:

e With only the name attribute to test that a required variable exists. If it does not exist,
the ColdFusion Server stops processing the page and displays an error message.

e With the name and default attributes to test for the existence of an optional variable.
If the variable exists, processing continues and the value is not changed. If the variable
does not exist, it is created and set to the value of the default attribute, and
processing continues.

The following example shows how to use the cfparam tag to check for the existence of an
optional variable and to set a default value if the variable does not already exist:

<cfparam name="Form.Contract" default="Yes">

Example: testing for variables

Using the cfparam tag with the name attribute is one way to clearly define the variables
that a page or a custom tag expects to receive before processing can proceed. This can
make your code more readable, as well as easier to maintain and debug.

For example, the following cfparam tags indicate that this page expects two form variables
named StartRow and RowsToFetch:

<cfparam name="Form.StartRow">
<cfparam name="Form.RowsToFetch">

Ensuring variable existence 61

If the page with these tags is called without either one of the form variables, an error
occurs and the page stops processing. By default, ColdFusion displays an error message;
you can also handle the error as described in Chapter 14, “Handling Errors” on page 281.

Example: setting default values

The following example uses the cfparam tag to see if optional variables exist. If they do
exist, processing continues. If they do not exist, the ColdFusion Server creates them and
sets them to the default values.

<cfparam name="Cookie.SearchString" default="temple">

<cfparam name="Client.Color" default="Grey">

<cfparam name="ShowExtralnfo" default="No">

You can use cfparam to set default values for URL and Form variables, instead of using
conditional logic. For example, you could include the following code on the action page
to ensure that a SelectDepts variable exists:

<cfparam name="Form.SelectedDepts" default="Marketing,Sales">

Validating data types

It is often not sufficient that input data merely exists; it must also have the right
format. For example, a date field must have data in a date format. A salary field must
have data in a numeric or currency format. There are many ways to ensure the
validity of data, including the following methods:

o Use the cfparamtag with the type attribute to validate any variable.

e Use aform input tag with a hidden attribute to validate the contents of a form
input field. For information on this technique, see “Validating form field data
types,” in Chapter 26.

e Use cfformcontrols that have validation attributes. For information on using
cfformtags, see Chapter 27, “Building Dynamic Forms” on page 607.

o Use the cfqueryparamtag in a SQL WHERE clause to validate query parameters.
For information on this technique, see “Using cfqueryparam,” in Chapter 20.

Note: Data validation using the cfparam, cfqueryparam and formtags is done by the server.
Validation using cfformtags is done using JavaScript in the user’s browser, before any data
is sent to the server.

Using cfparam to validate the data type

The cfparam type attribute lets you validate the type of a parameter. You can specify
that the parameter type must be any of the following values:

Type value Meaning

any any value

array any array value
binary any binary value
boolean true, false, yes, or no

62

Chapter 3 Using ColdFusion Variables

Type value Meaning

date any value in a valid date, time, or date-time format
numeric any number

query a query object

string a text string or single character

struct a structure

uuIiD a Universally Unique Identifier (UUID) formatted as

variableName

HXXXXXXK-XXXK-XXXX-XXXXXXXXXXXXXXX where X stands
for a hexadecimal digit (0-9 or A-F).

a valid variable name

For example, you can use the following code to validate the variable BirthDate:

<{cfparam name="BirthDate" type="date">

If the variable is not in a valid date format, an error occurs and the page stops

processing.

Validating data types

63

Passing variables to custom tags and UDFs

The following sections describe rules for how data gets passed to custom tags and
user-defined functions that are written in CFML, and to CEX custom tags that are
written in Java or C++.

Passing variables to CFML tags and UDFs

When you pass a variable to a CFML custom tag as an attribute, or to a user-defined
function as an argument, the following rules determine whether the custom tag or
function receives its own private copy of the variable or only gets a reference to the calling
page’s variable:

o Simple variables and arrays are passed as copies of the data. If your argument is an
expression that contains multiple simple variables, the result of the expression
evaluation is copied to the function or tag.

o Structures, queries, and cfobject objects are passed as references to the object.

If the tag or function gets a copy of the calling page’s data, changes to the variable in the
custom tag or function do not change the value of the variable on the calling page. If the
variable is passed by reference, changes to the variable in the custom tag or function also
change the value of the variable in the calling page.

To pass a variable to a custom tag, you must put the variable name in pound signs. To
pass a variable to a function, do 7ot put the variable name in pound signs. For example,
the following code calls a user-defined function using three Form variables:

<cfoutput>

TOTAL INTEREST: #fTotallInterest(Form.Principal, Form.AnnualPercent,

Form.Months){br>
</cfoutput>

The following example calls a custom tag using two variables, MyString and MyArray:
<cf_testTag stringval=MyStringf arrayval=MyArrayf>

Passing variables to CFX tags

You cannot pass arrays, structures, or cfobject objects to CFX tags. You can pass a query
to a CFX tag by using the query attribute when calling the tag. ColdFusion normally
converts simple data types to strings when passing them to CFX tags; however, the Java
Request Interface getIntAttribute method allows you to get a passed integer value.

64

Chapter 3 Using ColdFusion Variables

CHAPTER 4
Using Expressions and Pound Signs

This chapter discusses how to use expressions in CFML. It discusses the elements of
ColdFusion Expressions and how to create expressions. It also describes the correct use of
pound signs to indicate expressions in ColdFusion tags such as cfoutput, in strings, and
in expressions. Finally, it describes how to use variables in variable names and strings to
create dynamic expressions, and dynamic variables.

Contents

® EIXPIESSIONS entitiiiieititeetet ettt sttt s 66
o USIng POUNA SIZNS c.verveviieiiieiiieiiieiestet ettt ettt ne 71
¢ Dynamic expressions and dynamic variablescccoeoiiiniiniiniiniinn 74

65

Expressions

ColdFusion expressions consist of operands and operators. Operands are comprised of
constants and variables. Operators, such as the multiplication symbol, are the verbs that
act on the operands; functions are a form of operator.

The simplest expression consists of a single operand with no operators. Complex
expressions have multiple operators and operands. The following are all ColdFusion
Expressions:

12

MyVariable

(1+1)/2

"father" & "Mother"

Form.divisor/Form.dividend

Round(3.14159)

Operators act on the operands. Some operators, such as functions with a single
argument, take a single operand. Many operators, including most arithmetic and logical
operators, take two operands. The following is the general form of a two-operand
expression:

Expression Operator Expression

Note that the operator is surrounded by expressions. Each expression can be a simple
operand (variable or constant) or a subexpression consisting of more operators and
expressions. Complex expressions are built up using subexpressions. For example, in the
expression (1 + 1)/2, 1 + 1 is a subexpression consisting of an operator and two operands.

Operator types

ColdFusion has four types of operators:
e Arithmetic

e Boolean

e Decision (or comparison)

e String

Functions also can be viewed as operators because they act on operands.

Arithmetic operators

The following table describes the arithmetic operators:

Operator Description

+- %/ Basic arithmetic: addition, subtraction, multiplication, and division. In division,
the right operand cannot be zero.

+ - Unary arithmetic: Set the sign of a number.

MOD Modulus: Return the remainder after a number is divided by a divisor. The result
has the same sign as the divisor. The right should be an integer; using an integer
causes an error, and if you specify a real number ColdFusion ignores the
fractional part; for example, 11 MOD 4 is 3.

66

Chapter 4 Using Expressions and Pound Signs

Operator

Description

\

Integer division: Divide an integer by another integer. Use the backslash
character (\) to separate the integers. The right operand cannot be zero. For
example, 9\4 is 2.

Exponentiation: Return the result of a number raised to a power (exponent). Use
the caret character () to separate the number from the power; for example, 23
is 8. Real and negative numbers are allowed for both the base and the exponent.
However, any expression that equates to an imaginary number, such -1*.5
results in the string "-1.#IND. ColdFusion does not support imaginary or
complex numbers.

Boolean operators

Boolean, or logical, operators perform logical connective and negation operations. The
operands of Boolean operators are Boolean (True/False) values. The following table
describes the Boolean operators:

Operator

Description

NOT

AND

OR

XOR

EQV

IMP

Reverse the value of an argument. For example, NOT True is False and vice
versa.

Return True if both arguments are True; return False otherwise. For example,
True AND True is True, but True AND False is False.

Return True if any of the arguments is True; return False otherwise. For example,
True OR False is True, but False OR False is False.

Exclusive or: Return True if one of the values is True and the other is False.
Return False if both arguments are True or both are False. For example, True
XOR True is False, but True XOR False is True.

Equivalence: Return True if both operands are True or both are False. The EQV
operator is the opposite of the XOR operator. For example, True EQV True is
True, but True EQV False is False.

Implication: The statement A IMP B is the equivalent of the logical statement “If
A Then B.” AIMP B is False only if Ais True and B is False. It is True in all other
cases.

Decision operators

The ColdFusion decision, or comparison, operators produce a Boolean True/False result.
The following table describes the decision operators:

Operator Description

IS Perform a case-insensitive comparison of two values.
Return True if the values are identical.

IS NOT Opposite of IS. Perform a case-insensitive
comparison of two values. Return True if the values
are not identical.

CONTAINS Return True if the value on the left is contained in the

value on the right.

Expressions 67

Operator

Description

DOES NOT CONTAIN

GREATER THAN

LESS THAN

GREATER THAN OR EQUAL TO

LESS THAN OR EQUAL TO

Opposite of CONTAINS. Return True if the value on
the left is not contained in the value on the right.

Return True if the value on the left is greater than the
value on the right.

Opposite of GREATER THAN. Return True if the
value on the left is smaller than the value on the right.

Return True if the value on the left is greater than or
equal to the value on the right.

Return True if the value on the left is less than or equal
to the value on the right.

Alternative notation for decision operators

You can replace some decision operators with alternative notations to make your CFML
more compact, as shown in the following table:.

Operator Alternative name(s)
IS EQUAL, EQ

ISNOT NOT EQUAL, NEQ
GREATER THAN GT

LESS THAN LT

GREATER THAN OREQUAL TO GTE, GE

LESS THAN OR EQUAL TO LTE, LE

Decision operator rules

The following rules apply to decision operators:

¢ When ColdFusion evaluates an expression that contains a decision operator other
than CONTAINS or DOES NOT CONTAIN, it first determines if the data can be

converted to numeric values. If they can be converted, it performs a numeric

comparison on the data. If they cannot be converted, it performs a string comparison.

This can sometimes result in unexpected results. For more information on this

behavior, see “Evaluation and type conversion issues,” in Chapter 3.

e When ColdFusion evaluates an expression with CONTAINS or DOES NOT
CONTAIN it does a string comparison. The expression A CONTAINS B evaluates
to True if B is a substring of A. Therefore an expression such as the following

evaluates as True:
123.45 CONTAINS 3.4

e When a ColdFusion decision operator compares strings, it ignores the case. As a

result, the following expression is True:

"a" IS A"

68

Chapter 4 Using Expressions and Pound Signs

e When a ColdFusion decision operator compares strings, it evaluates the strings from
left to right, comparing the characters in each position according to their sorting
order. The first position where the characters differ determines the relative values of
the strings. As a result, the following expressions are True:

"ab" LT "aba"
"abde" LT "ac"

String operators

There is one string operator, which is the concatenation operator.

Operator Description

& Concatenates strings.

Operator precedence and evaluation ordering

The order of precedence controls the order in which operators in an expression are
evaluated. The order of precedence is as follows:

Unary +, Unary -
N

*,

\

MOD

+, -

&

EQ, NEQ, LT, LTE, GT, GTE, CONTAINS, DOES NOT CONTAIN
NOT

AND

OR

XOR

EQv

IMP

To enforce a non-standard order of evaluation, you must parenthesize expressions. For
example:

e 6-3*2isequalto0

e (6-3)*2isequalto6

You can nest parenthesized expressions. When in doubt about the order in which
operators in an expression will be evaluated, use parentheses to force the order of
evaluation.

Using functions as operators

Functions are a form of operator. Because ColdFusion functions return values, you can
use function results as operands. Function arguments are expressions. For example, the
following are valid expressions:

e Rand()

o UCase("This is a text: ") & ToString(123 + 456)

Expressions 69

Function syntax

The following table shows function syntax and usage guidelines:

Usage Example

No arguments Function()

Basic format Function(Data)

Nested functions Functionl(Function2(Data))
Multiple arguments Function(Datal, Data2, Data3)
String arguments Function('This is a demo")

Function("This is a demo")

Arguments that are expressions Functionl(X*Y, Function2("Text"))

All functions return values. In the following example, the cfset tag sets a variable to the
value returned by the Now function:

<{cfset myDate = DateFormat(Now(), "mmmm d, yyyy")>

You can use the values returned by functions directly to create more complex expressions,
as in the following example:

Abs(Myvar)/Round(3.14159)

For more information on how to insert functions in expressions, see “Using pound signs”
on page 71.

Optional function arguments

Some functions take optional arguments after their required arguments. If omitted, all
optional arguments default to a predefined value. For example:

o Replace("Eat and Eat", "Eat", "Drink") returns "Drink and Eat"

o Replace("Eat and Eat", "Eat", "Drink", "All") returns "Drink and Drink"

The difference in the results is because the Replace function takes an optional fourth
argument that specifies the scope of replacement. The default value is "One,"” which
explains why only the first occurrence of "Eat" was replaced with "Drink" in the first
example. In the second example, a fourth argument causes the function to replace all
occurrences of "Eat" with "Drink".

Expression evaluation and functions

It is important to remember that ColdFusion evaluates function attributes as expressions
before it executes the function. As a result, you can use any ColdFusion expression as a
function attribute. For example, consider the following lines:

<{cfset firstVariable = "we all need">
<cfset myStringVar = UCase(firstVariable & " more sleep!")>

When ColdFusion Server executes the second line, it does the following:
1 Determines that there is an expression with a string concatenation.

2 Evaluates the firstVariable variable as the string "we all need".

70

Chapter 4 Using Expressions and Pound Signs

3 Concatenates "we all need" with the string " more sleep!" to get "we all need more
sleep!".

4 Dasses the string "we all need more sleep!" to the UCase function.

Executes the UCase function on the string argument "we all need more sleep!" to get

"WE ALL NEED MORE SLEEP!".

6 Assigns the string value "WE ALL NEED MORE SLEEP!" to the variable
myStringVar.

ColdFusion completes steps 1-3 before invoking the function.

Using pound signs

Pound signs (#) have a special meaning in CFML. When the ColdFusion Server
encounters pound signs in CFML text, such as the text in a cfoutput tag body, it checks
to see if the text between the pound signs is either a variable or a function.

Is so, it replaces the text and surrounding pound signs with the variable value or the result
of the function. Otherwise, ColdFusion generates an error.

For example, to output the current value of a variable named Form.MyFormVariable, you
delimit (surround) the variable name with pound signs:

<cfoutput>Value is #fForm.MyFormVariablef</cfoutput>

In this example, the variable Form.MyFormVariable is replaced with the value assigned to it.

Follow these guidelines when using pound signs:

e Use pound signs to distinguish variables or functions from plain text.

¢ Surround only a single variable or function in pound signs; for example,
#Variables.myVar# or #Left(myString, position)#. (However, a function in pound
signs can contain nested functions, such as #Left(trim(myString), position)#.

¢ Do not put complex expressions, such as 1 + 2 in pound signs.

o Use pound signs only where necessary, because unneeded pound signs slow
processing.

The following sections provide more details on how to use pound signs in CFML. For a

description of using pound signs to create variable names, see “Using pound signs to

construct a variable name in assignments” on page 76

Using pound signs in ColdFusion tag attribute values

You can put variables, functions, or expressions inside tag attributes by enclosing the
variable or expression with pound signs. For example, if the variable CookieValue has the
value "MyCookie", the following line sets the cfcookie value attribute to "The value is
MyCookie":

<cfcookie name="TestCookie" value="The value is ffCookieValue#">

You can optionally omit quotation marks around variables used as attribute values as
shown in the following example:

<cfcookie name = TestCookie value = ffCookieValuef>

Using pound signs V4l

However, surrounding all attribute values in quotation marks is more consistent with

HTML coding style.

If you use string expressions to construct an attribute value, as shown in the following
example, the strings inside the expression use single quotation marks () to differentiate
the quotation marks from the quotation marks that surround the attribute value.

<cfcookie name="TestCookie2" value="The f#CookieValue & 'ate the cookie!'#">

Note: You do not need to use pound signs when you use the cfset tag to assign one
variable’s value to another value. For example, the following tag assigns the value of the
oldVar variable to the new variable, newVar: <cfset newVar = oldVan.

Using pound signs in tag bodies

You can put variables or functions freely inside the bodies of the following tags by
enclosing each variable or expression with pound signs:

o cfoutput

o cfquery

e cfmail

For example:

<cfoutput>
Value is #fForm.MyTextField#
</cfoutput>

<cfoutput>
The name is #fFirstNamest #LastNamest.
</cfoutput>

<cfoutput>
The value of Cos(0) is #Cos(0)#
</cfoutput>

If you omit the pound signs, the text, rather than the value, appears in the output
generated by the cfoutput statement.
Two expressions inside pound signs can be adjacent to one another, as in the following

example:

<cfoutput>
"Mo" and "nk" is fLeft("Moon", 2)iHMid("Monkey", 3, 2)#
</cfoutput>

This code displays the following text:
"Mo" and "nk" is Monk

ColdFusion does not interpret the double pound sign as an escaped # character.

Using pound signs in strings

You can put variables or functions freely inside strings by enclosing each variable or
expression with pound signs; for example:
<cfset TheString = "Value is #fForm.MyTextField#">

<cfset TheString = "The name is #FirstName# #LastNameif.">
<cfset TheString = "Cos(0) is #Cos(0)#">

72

Chapter 4 Using Expressions and Pound Signs

ColdFusion automatically replaces the text with the value of the variable or the value
returned by the function. For example, the following pairs of cfset statements produce
the same result:

<cfset TheString = "Hello, #FirstNameff!">
{cfset TheString = "Hello, " & FirstName & "!">

If pound signs are omitted inside the string, the text, rather than the value, appears in the
string. For example, the following pairs of cfset statements produce the same result:
<cfset TheString = "Hello, FirstName!">

<{cfset TheString = "Hello, " & "First" & "Name!">

As with the cfoutput statement, two expressions can be adjacent to each other in strings,
as in the following example:

<cfset TheString = "Monk is #fLeft("Moon", 2)HMid("Monkey", 3, 2)#">

The double quotes around "Moon" and "Monkey" do 70z need to be escaped (as in
""Moon"" and ""Monkey""). This is because the text between the pound signs is treated
as an expression; it is evaluated before its value is inserted inside the string.

Nested pound signs

In a few cases, you can nest pound signs in an expression. The following example uses
nested pound signs:
{cfset Sentence = "The length of the full name is

flLen("#FirstNameff fLastNameft")#">
In this example, pound signs are nested so that the values of the variables FirstName and
LastName are inserted in the string whose length the Len function calculates.

Nested pound signs imply a complex expression that can typically be written more clearly
and efficiently without the nesting. For example, you can rewrite the preceding code
example without the nested pound signs, as follows:

<cfset Sentence? = "The Tength of the full name is #flLen(FirstName & " "
& LastName)#">

The following achieves the same results and can further improve readability:

<cfset FullName = "#fFirstNameff #LastNamef">
<cfset Sentence = "The Tength of the full name
is ffLen(FullName)#">

A common mistake is to put pound signs around the arguments of functions, as in:

{cfset ResultText = "ffLen(#TheTextif)i">

<cfset ResultText = "#Min(#ThisVariables, 5 + #ThatVariablelp)#">

{cfset ResultText = "ffLen(stLeft("Some text", 4)IF)#">

These statements result in errors. As a general rule, zever put pound signs around
function arguments.

Using pound signs 73

Using pound signs in expressions

Use pound signs in expressions only when necessary, because unneeded pound signs
reduce clarity and can increase processing time. The following example shows the
preferred method for referencing variables:

{cfset SomeVar = Varl + Max(Varz2, 10 * Var3) + Vard>

In contrast, the following example uses pound signs unnecessarily and is less efficient
than the previous statement:

<cfset #SomeVarft = #Varl# + #Max(Var2, 10 * Var3)# + {Vardf>

Dynamic expressions and dynamic variables

This section discusses the advanced topics of dynamic expressions, dynamic evaluation,
and dynamic variable naming. Many ColdFusion programmers never encounter or need
to use dynamic expressions. However, dynamic variable naming is important in
situations where the variable names are not known in advance, such as in shopping cart
applications.

This section also discusses the use of the IIF function which is most often used without
dynamic expressions. This function dynamically evaluates its arguments, and you must
often use the DE function to prevent the evaluation. For more information on using the
1IF function, see “Using the IIF function” on page 80.

Note: This section uses several tools and techniques that are documented in later chapters.

If you are unfamiliar with using ColdFusion forms, structures, and arrays, you should learn
about these tools before reading this section.

About dynamic variables

Dynamic variables are variables that are named dynamically, typically by creating a
variable name from a static part and a variable part. For example, the following example
dynamically constructs the variable name from a variable prefix and a static suffix:

<cfset "ffflavorft_availability" = "out of stock">

Using dynamic variables in this manner does not require dynamic evaluation.

About dynamic expressions and dynamic evaluation

In a dynamic expression, the actual expression, not just its variable values, is determined
at execution time. In other words, in a dynamic expression the structure of the
expression, such as the names of the variables, not just the values of the variables, gets
built at runtime.

You create dynamic expressions using string expressions, which are expressions contained
in strings, (that is, surrounded with quotation marks). Dynamic evaluation is the process
of evaluating a string expression. The Evaluate and 1IF functions, and only these
functions, perform dynamic evaluation.

74

Chapter 4 Using Expressions and Pound Signs

When ColdFusion performs dynamic evaluation it does the following:

1 Takes a string expression and treats it as a standard expression, as if the expression was
not a string.

2 Parses the expression to determine the elements of the expression and validate the
expression syntax.

3 Evaluates the expression, looking up any variables and replacing them with their
values, calling any functions, and performing any required operations.

This process enables ColdFusion to interpret dynamic expressions with variable parts.
However, it incurs a substantial processing overhead.

Dynamic expressions were important in early versions of ColdFusion, before it supported
arrays and structures, and they still can be useful in limited circumstances. However, the
ability to use structures and the ability to use associative array notation to access structure
elements provide more efficient and easier methods for dynamically managing data. For
information on using arrays and structures, see Chapter 5, “Using Arrays and Structures”

on page 87.

Selecting how to create variable names

The following two examples describes cases when you need dynamic variable names:

e Form applications where the number and names of fields on the form vary
dynamically. In this case, the form posts only the names and values of its fields to the
action page. The action page does not know all the names of the fields, although it
does know how the field names (that is, the variable names) are constructed.

o If the following are true:

— ColdFusion calls a custom tag multiple times
— the custom tag result must be returned to different variables each time
— the calling code can specify the variable in which to return the custom tag result.
In this case, the custom tag does not know the return variable name in advance, and
gets it as an attribute value.
In both cases, it might appear that dynamic expressions using the Evaluate function are
needed to construct the variable names. However, you can achieve the same ends more
efficiently by using dynamic variable naming, as shown in “Example: a dynamic
shopping cart” on page 82.
This does not mean that you must always avoid dynamic evaluation. However, given the
substantial performance costs of dynamic evaluation, you should first ensure that one of
the following techniques cannot serve your purpose:
e An array (using index variables)
e Associative array references containing expressions to access structure elements
¢ Dynamically generated variable names

Dynamic variable naming without dynamic evaluation

While ColdFusion does not always allow you to construct a variable name in-line from

variable pieces, it does let you to do so in the most common uses, as described in the
following sections.

Dynamic expressions and dynamic variables 75

Using pound signs to construct a variable name in assignments

You can combine text and variable names to construct a variable name on the left side of
a cfset assignment. For example, the following code sets the value of the variable
Productl2 to the string "Widget":

<cfset ProdNo = 12>

<cfset "Product#ProdNoft" = "Widget">

To construct a variable name this way, all the text on the left side of the equal sign must
be in quotation marks.

This usage is less efficient than using arrays. The following example has the same purpose
as the previous one, but requires less processing:
{cfset MyArray=ArrayNew(1)>

<cfset prodNo = 12>
<cfset myArray[prodNo] = "Widget">

Dynamic variable limitation

When you use a dynamic variable name in quotes on the left side of an assignment, the
name must be either a simple variable name or a complex name that uses object.property
notation (such as MyStruct.#KeyName#). You cannot use an array as part of a dynamic
variable name. For example, the following code generates an error:

{cfset MyArray=ArrayNew(1)>

<cfset productClassNo = 1>

<cfset productltemNo = 9>

<cfset "myArray[ffproductClassNofHfproductItemNoff]l" = "Widget">

However, you can construct an array index value dynamically from variables without
using quotes on the left side of an assignment. For example, the preceding sample code
works if you replace the final line with the following line:

<cfset myArray[ffproductClassNo# & ffproductItemNoft] = "Widget">

Dynamically constructing structure references

The ability to use associative array notation to reference structures provides a way for you
to use variables to dynamically create structure references. (For a description of
associative array notation, see “Structure notation,” in Chapter 5.) Associative array
structure notation allows you to use a ColdFusion expression inside the index brackets.
For example, if you have a productName structure with keys of the form product_1,
product_2 and so on, you can use the following code to display the value of
productName.product_3:
{cfset prodNo = 3>
<cfoutput>

Product_3 Name: #ProductName["product_" & prodNol#
<cfoutput>
For an example of using this format to manage a shopping cart, see “Example: a dynamic
shopping cart” on page 82.

76

Chapter 4 Using Expressions and Pound Signs

Using dynamic evaluation
The following sections describe how to use dynamic evaluation and create dynamic
expressions.

ColdFusion dynamic evaluation functions

The following table describes the functions that perform dynamic evaluation and are
useful in evaluating dynamic expressions:

Function Purpose

DE Escapes any double quotes in the argument and wraps the result in
double quotes. The DE function is particularly useful with the 11F
function, to prevent the function from evaluating a string to be output.

For an example of using the DE function with the I1F function, see
“Using the IIF function” on page 80.

Evaluate Takes one or more string expressions and dynamically evaluates their
contents as expressions from left to right. (The results of an evaluation
to the left can have meaning in an expression to the right.) Returns the
result of evaluating the rightmost argument.

For more information on this function see “About the Evaluate function”
on page 78.

IF Evaluates a boolean condition expression. Depending on whether this
expression is True or False, dynamically evaluates one of two string
expressions and returns the result of the evaluation. The 11F function is
convenient for incorporating a cfif tag in-line in HTML.

For an example of using this function, see “Using the IIF function” on
page 80.

SetVariable Sets a variable identified by the first argument to the value specified by
the second argument. This function is no longer required in well-formed

ColdFusion pages; see “SetVariable function considerations” on page
80.

Function argument evaluation considerations

It is important to remember that ColdFusion always evaluates function arguments before
the argument values are passed to a function:

For example, consider the following DE function:
<cfoutput>#DE("1" & "2™){K/cfoutput>

You might expect this line to display """1"" & ""2""". Instead, it displays “12”, because
ColdFusion processes the line as follows:

1 Evaluates the expression "1" & "2" as the string “12”.
2 Dasses the string "12" (without the quotes) to the DE function.
3 Calls the DE function, which adds literal quotation marks around the 12.

Similarly, if you use the expression DE(1 + 2), ColdFusion evaluates 1 + 2 as the integer 3
and passes it to the function. The function converts it to a string and surrounds the string
in literal quotation marks: “3”.

Dynamic expressions and dynamic variables 77

About the Evaluate function

The following example can help you understand the Evaluate function and how it works
with ColdFusion variable processing:

<{cfset myVar2="myVar">
<{cfset myVar="27/9">
<cfoutput>
fmyVar2#

fhmyVardibr>
#FEvaluate("myVar2"){br>
#fEvaluate("myVar")#

#Evaluate(myVar2)ibr>
#FEvaluate(myVar)ibr>
</cfoutput>

Reviewing the code

The following table describes how ColdFusion processes this code:

Code

Description

<cfset myVarz="myVar">
<{cfset myVar="27/9">

<cfoutput>
fimyVar2f<bry>
JmyVardbr>

#fEvaluate("myVar2")iKbr>

ffEvaluate("myVar")f

ffEvaluate(myVar2)ibr>

#FEvaluate(myVar)ibr>
</cfoutput>

Sets the two variables to the following strings:
myVar
27/9

Displays the values assigned to the variables, myVar
and 27/9 respectively.

Passes the string "myvar2" (without the quotes) to the
Evaluate function, which does the following:
1 Evaluates it as the variable myVar2.

2 Returns the value of the myVar2 variable, the string
"myvar" (without the quotes).

Passes the string "myvar" (without the quotes) to the
Evaluate function, which does the following:
1 Evaluates it as the variable myVar.

2 Returns the value of the myVar variable, the string
"27/9" (without the quotes).

Evaluates the variable myVar2 as the string "myVar" and
passes the string (without the quotes) to the Evaluate
function. The rest of the processing is the same as in the
previous line.

Evaluates the variable myVar as the string "27/9"
(without the quotes), and passes it to the Evaluate
function, which does the following:

1 Evaluates the string as the expression 27/9

2 Performs the division.

3 Returns the resulting value, 3.

78

Chapter 4 Using Expressions and Pound Signs

As you can see, using dynamic expressions can result in substantial expression evaluation
overhead, and the code can be confusing. Therefore, you should avoid using dynamic
expressions wherever a simpler technique, such as using indexed arrays or structures can
SErve your purposes.

Avoiding the Evaluate function

Using the Evaluate function increases processing overhead, and in most cases it is not
necessary. The following sections provide examples of cases where you might consider
using the Evaluate function.

Example 1

You might be inclined to use the Evaluate function in code such as the following:
<cfoutput>l + 1 is #Evaluate(l + 1)#</cfoutput>
Although this code works, it is not as efficient as the following code:

<cfset Result =1+ 1>
<cfoutput>l + 1 is ffResultfi</cfoutput>

Example 2

This example shows how you can use an associative array reference in place of an

Evaluate function. This technique is powerful because:

¢ Most ColdFusion scopes are accessible as structures.

¢ You can use ColdFusion expressions in the indexes of associative array structure
references. (For more information on using associative array references for structures,
see “Structure notation,” in Chapter 5.)

The following example uses the Evaluate function to construct a variable name:

<cfoutput>

Product Name: #Evaluate("Form.product_fi#")#

</cfoutput>

This code comes from an example where a form has entries for an indeterminate number
of items in a shopping cart. For each item in the shopping cart there is a product name
field. The field name is of the form product_1, product_2, and so on, where the number
corresponds to the product’s entry in the shopping cart. In this example, ColdFusion
does the following:

1 Replaces the variable i with its value, for example 1.

2 concatenates the variable value with "Form.product_", and passes the result (for
p p
Form.product_1) to the Evaluate function, which does the remaining steps.

3 Darses the variable product_1 and generates an executable representation of the
variable. Because ColdFusion must invoke its parser, this step requires substantial
processing, even for a simple variable.

4 Evaluates the representation of the variable, for example as "Air popper".

Returns the value of the variable.

Dynamic expressions and dynamic variables 79

The following example has the same result as the preceding example and is more
efficient:

<cfoutput>
ProductName: #Form["product_" & il#
</cfoutput>

In this code, ColdFusion does the following:

1 Evaluates the expression in the associative array index brackets as the string
"product_" concatenated with the value of the variable i.

2 Determines the value of the variable i; 1.
Concatenates the string and the variable value to get product_1.

Uses the result as the key value in the Form structure to get Form[product_1]. This
associative array reference accesses the same value as the object.attribute format
reference Form.product_1; in this case, Air popper.

This code format does not use any dynamic evaluation, but it achieves the same effect, of
dynamically creating a structure reference by using a string and a variable.

SetVariable function considerations

You can avoid using the SetVariable function by using a format such as the following to
set a dynamically named variable. For example, the following lines are equivalent:

<cfset SetVariable("myVar" & i, myVal)>
<cfset "myVarfHi#f" = myVal>

In the second line, enclosing the myVar#i# variable name in quotation marks tells
ColdFusion to evaluate the name and process any text in pound signs as a variable or
function. ColdFusion replaces the #i# with the value of the variable i, so that if the value
of i is 12, this code is equivalent to the line

<{cfset myVarl2 = myVal>

For more information on this usage, see “Using pound signs to construct a variable name
in assignments” on page 76.

Using the IIF function

The IIF function is a shorthand for the following code:

<cfif argumentl>

<{cfset result = Evaluate(argumentl)>
<{cfelse>

{cfset result = Evaluate(argument?2)>
<Jefif>
The function returns the value of the result variable. It is comparable to the use of the
JavaScript and Java ? : operator, and can result in more compact code. As a result, the IIF
function can be convenient even if you are not using dynamic expressions.

80

Chapter 4 Using Expressions and Pound Signs

The IIF function requires the DE function to prevent ColdFusion from evaluating literal
strings, as the following example shows:

<cfoutput>

#IIf(IsDefined("LocalVar"), "LocalVar", DE("The variable is not
defined."))#

</cfoutput>

If you do not enclose the string "The variable is not defined." in a DE function, the IIF
function tries to evaluate the contents of the string as an expression and generates an
error (in this case, an invalid parser construct error).

The IIF function is useful for incorporating ColdFusion logic in-line in HTML code,
but it entails a processing time penalty in cases where you do not otherwise need dynamic
expression evaluation.

The following example shows using I1IF to alternate table row background color between
white and gray. It also shows the use of the DE function to prevent ColdFusion from
evaluating the color strings.

<cfoutput>
<{table border="1" cellpadding="3">
<cfloop index="i" from="1" to="10">
<tr bgcolor="#I1F(i mod 2 eq 0, DE("white"), DE("gray"))#">
<td>
hello #ift
</td>
</tr>
</cfloop>
</table>
</cfoutput>

This code is more compact than the following example which does not use IIF or DE.

<cfoutput>
<table border="1" cellpadding="3">
<cfloop index="i" from="1" to="10">
<cfif i mod 2 EQ 0>
<cfset Color = "white">
<cfelse>
<{cfset Color = "gray">
<Jcfif>
<tr bgcolor="#color#">
<td>
hello #if
</td>
</tr>
</cfloop>
<{/table>
</cfoutput>

Dynamic expressions and dynamic variables 81

Example: a dynamic shopping cart

The following example dynamically creates and manipulates variable names without
using dynamic expression evaluation by using associative array notation.

You need to dynamically generate variable names in applications such as shopping carts,
where the required output is dynamically generated and variable. In a shopping cart, you
do not know in advance the number of cart entries or their contents. Also, because you

are using a form, the action page only receives Form variables with the names and values

of the form fields.

The following example shows the shopping cart contents and lets you edit your order and
submit it. To simplify things, the example automatically generates the shopping cart
contents using CFScript instead of having the user fill the cart. A more complete example
would populate a shopping cart as the user selected items. Similarly, the example omits all
business logic for committing and making the order.

To create the form:
1 Create a file in your editor.

<html>

<head>
<title>Shopping Cart</title>

</head>

<cfscript>

Cartltems=4;

Cart = ArrayNew(1);

for (i=1; i LE cartlitems; i=i+l)

{
Cart[iJ1=StructNew();
Cart[i].ID=1;
Cart[i].Name="Product " & 1i;
Cart[i].SKU=1*100+(2*i*10)+(3*1);
Cart[i].Qty=3*i-2;

}

</cfscript>

<body>
Your shopping cart has the following items.

You can change your order quantities.

If you don't want any item, clear the item's check box.

When you are ready to order, click submit.

<cfform name="ShoppingCart" action="ShoppingCartAction.cfm" method="post">
<table>
<tr>
<td>0Order?</td>
<td>Product</td>
<td>Code</td>
<td>Quantity</td>
</tr>
<cfloop index="1i" from="1" to="ffcartItems#">
<tr>
<cfset productName= "product_" & Cart[i].ID>
<cfset skuName= "sku_" & Cart[i].ID>

82 Chapter 4 Using Expressions and Pound Signs

<{cfset qtyname= "qty_" & Cart[i].ID>

<td><cfinput type="checkbox" name="itemID" value="#Cart[i].ID#" checked>
</td>

<td><cfinput type="text" name="ffproductNameft" value="#Cart[i].Names"
passThrough = "readonly = 'True'"></td>

<td><cfinput type="text" name="#tskuName#" value="#fCart[i].SKUs#"
passThrough = "readonly = 'True'"></td>

<td><cfinput type="text" name="sfqtyName#" value="#Cart[i].Qty#">
<Jtd>

</tr>

</cfloop>

</table>

<input type="submit" name="submit" value="submit">
</cfform>

</body>
</html>

2 Save the page as ShoppingCartForm.cfm.

Reviewing the code

The following table describes the code:

Code Description
{cfscript> Create a shopping cart as an array of
CartItems=4; structures, with each structure containing

Cart = ArrayNew(1);
for (i=1; i LE ffcartltems#; i=i+1)

{

Cart[i]=StructNew();

the cart item ID, product name, SKU
number, and quantity ordered for one item
in the cart. Populate the shopping cart by

Cart[i7.1D=i: looping Cartltems times and setting the
Cart[i].Name="Product " & 1; structure variables to arbitrary values
Cart[i].SKU=1*100+(2*1*10)+(3*1); based on the loop counter. A real
Cart[i].Qty=3*i-2; application would set the Name, SKU, and
} Quantity values on other pages.
</cfscript>
<cfform name="ShoppingCart” Start the form and its embedded table.
action="shoppingCartAction.cfm When the user clicks the submit button,

method="post">

<Er>

post the form data to the
ShoppingCartAction.cfm page.

<td>0rder?</td> The table formats the form neatly. The first
<td>Product</td> table row contains the column headers.
<td>Code</td> Each following row has the data for one
<td>Quantity</td> cart item.

</t

Dynamic expressions and dynamic variables 83

Code

Description

<cfloop index="i" from="1" to="ffcartItemsi">
<tr>
<cfset productName= "product_" &
Cart[i].1D>
<cfset skuName= "sku_" & Cart[i].ID>
<cfset qtyname= "qty_" & Cart[i].ID>
<td><cfinput type="checkbox"
name="1itemID" value="ffCartl[i].ID#"
checked>
<Jtd>
<td><cfinput type="text"
name="#fproductNameft"
value="#Cart[i].Names}"
passThrough = "readonly = 'True'">
</td>
<td><cfinput type="text"
name="{fskuNamef"
value="#Cart[i].SKU#"
passThrough = "readonly = 'True'">
</td>
<td><cfinput type="text"
name="#tqtyNamest"
value="ffCart[i].Qty#">
</td>
</tr>
</cfloop>
</table>

<input type="submit" name="submit"
value="Submit">
</form>

Loop through the shopping cart entries to
generate the cart form dynamically. For
each loop, generate variables used for the
form field name attributes by appending
the cart item ID (Cart[i].ID) to a field type

identifier, such as "sku_".

Use a single name, "itemlID", for all check
boxes. This way, the itemID value posted
to the action page is a list of all the check
box field values. The check box field value
for each item is the cart item ID.

Each column in a row contains a field for a
cart item structure entry. The passthrough
attribute sets the product name and SKU
fields to read-only; note the use of single
quotes. (For more information on the
cfinput tag passthrough attribute, see
CFML Reference.) The check boxes are
selected by default.

Create the Submit button and end the
form.

To create the Action page:
1 Create a file in your editor.

2 Enter the following text:

<html>
<head>
<title>Your Order</title>
</head>
<body>
<cfif isDefined("Form.submit")>

<cfparam name="Form.itemID" default="">

<cfoutput>

You have ordered the following items:

<cfloop index="i" T1ist="ffForm.itemID#">
ProductName: #Form["product_" & iJ{#Kbr>
Product Code: #fForm["sku_" & ilibr>
Quantitiy: #Form["qty_" & ilfKbr>

</cfloop>
</cfoutput>
<Jefif>
</body>
</htm1>

84

Chapter 4 Using Expressions and Pound Signs

3 Save the file as ShoppingCartAction.cfm

4 Open ShoppingCartform.cfm in your browser, change the check box and quantity

values, and click Submit.

Reviewing the code

The following table describes the code:

Code

Description

<cfif isDefined("Form.submit")>

<cfparam name="Form.itemID"
default="">

<cfoutput>
You haver ordered the following
items:

<cfloop index="i" Tist=
"ffForm.itemIDH">
ProductName:
#iForm["product_" & 1iJjKKbr>
Product Code:
JFForm["sku_" & 1i1#

Quantitiy:
#Form"qty_" & 1J#br>

</cfloop>
</cfoutput>
<Jefif>

Run the CFML on this page only if it is called by
submitting a form. This is not needed if there are
separate form and action pages, but is required if the
form and action page were one ColdFusion page.

Set the default Form.itemID to the empty string. This
prevents ColdFusion from displaying an error if the user
clears all check boxes before submitting the form (so no
product IDs are submitted).

Display the name, SKU number, and quantity for each
ordered item.

The form page posts Form.itemlID as a list containing
the value attributes of all the check boxes. These
attributes contain the shopping cart item IDs for the
selected cart items. Use the list values to index a loop
that outputs each ordered item.

Use associative array notation to access the Form
scope as a structure and use expressions in the array
indexes to construct the form variable names. The
expressions consist of a string containing the field
name’s field type prefix (for example, "sku_"),
concatenated with the variable i, which contains the
shopping cart ltemID number (which is also the loop
index variable).

Dynamic expressions and dynamic variables 85

86 Chapter 4 Using Expressions and Pound Signs

CHAPTERS
Using Arrays and Structures

ColdFusion supports dynamic multidimensional arrays. This chapter explains the basics
of creating and handling arrays. It also provides several examples showing how arrays can
enhance your ColdFusion application code.

ColdFusion also supports structures for managing lists of key-value pairs. Because
structures can contain other structures or complex data types as it values, they provide a
flexible and powerful tool for managing complex data. This chapter explains the basics of
creating and working with structures.

Contents

® ADOUE AITAYS vttt ettt ne 88
o Basic array techniques........occocuioiiiiiiiciiiiccicc s 90
o Populating arrays with data.........ccccoeiiiiiiiiiiiiii, 95
® ALTay fUNCHONS vttt ettt 98
® ADOUE STIUCEULES «.euveveneeteeetitetiiei ettt ettt ettt ettt ee 99
o Creating and USING SIIUCTULES.c.cveuiiiiiiiiiiiicicieii e 102
® STrUCTULE EXAMPE .curiiiiiiiiiieiiiciecrcere ettt 109
® SErUCTULE fUNCHOMNS ..ottt s 113

87

About arrays

Traditionally, an array is a tabular structure used to hold data, much like a spreadsheet
table with clearly defined limits and dimensions.

In ColdFusion, you typically use arrays to temporarily store data. For example, if your
site lets users order goods online, you can store their shopping cart contents in an array.
This lets you make changes easily without committing the information, which the user
can change before completing the transaction, to a database.

Basic array concepts

The following terms will help you understand subsequent discussions of ColdFusion

arrays:

o Array dimension The relative complexity of the array structure.

o Index The position of an element in a dimension, ordinarily surrounded by square
brackets: my1Darray[1], my2Darray[1][1], my3Darray[1][1][1].

o Array element Data stored at an array index.

The simplest array is a one-dimensional array, similar row in a table. A one-dimensional

array has a name (the variable name) and a numerical index. The index number

references a single entry, or cell, in the array, as the following figure shows:

a1l al2] a[3] a[4] ald]

Thus, the following statement sets the value of the fifth entry in the one-dimensional
array MyArray to “Robert”™

<cfset MyArray[5] = "Robert">
A basic two-dimensional (2D) array is like a simple table. A three-dimensional (3D) array
is like a cube of data, and so on. ColdFusion lets you directly create arrays with up to
three dimensions. You can use multiple statements to create arrays with more than three
dimensions.

The syntax my2darray[1]1[3]="Paul" is the same as saying 'My2dArray is a
two-dimensional array and the value of the array element index [1][3] is "Paul"'.

About ColdFusion arrays

ColdFusion arrays differ from traditional arrays, because they are dynamic. For example,
in a conventional array, array size is constant and symmetrical, whereas in a ColdFusion
array, you can have rows of differing lengths based on the data that has been added or
removed.

The following figures show the differences between traditional arrays and ColdFusion
arrays using 2D arrays. The differences between traditional and ColdFusion 3D arrays
are similar, but much harder to show on a page.

88

Chapter 5 Using Arrays and Structures

A conventional 2D array is like a fixed-size table made up of individual cells, as the
following figure shows:

a[1]1] al1][2] a[1][3] a[1][4]

a[2][1] a[2][2] a[2](3] a[2]4]

a3][1] a[3][2] a[3][3] a[3][4]

a[4][1] a[4][2] a[4][3] a[4][4]

The following figure represents a ColdFusion 2D array:

a[1][1] a[1][2] a[1][3] a[1][4]
af2][1] .. a[2][5]

a[3][1] a[3][2]
af4][1] a[4][3]

A ColdFusion 2D array is actually a one-dimensional array that contains a series of
additional 1D arrays. Each of the arrays that make up a row can expand and contract
independently of any other column. Similarly, a ColdFusion 3D array is essentially three
nested sets of 1D arrays.

Dynamic arrays expand to accept data you add to them and contract as you remove data
from them.

About arrays 89

Basic array techniques

The following sections describe how to reference array elements, create arrays, add and
remove array elements, and copy arrays.

Referencing array elements

You reference array elements by enclosing the index with brackets: arrayName[x] where x
is the index that you want to reference. In ColdFusion, array indexes are counted starting
with position 1, which means that position 1 in the firstname array is referenced as
firstcname[1]. For 2D arrays, you reference an index by specifying two coordinates:
myarray[1][1].

You can use ColdFusion variables and expressions inside the square brackets to reference
an index, as the following example shows:

<cfset myArray=ArrayNew(1)>

<{cfset myArray[1]="First Array Element">

<{cfset myArray[l + 1]="Second Array" & "Element">
<cfset arraylIndex=3>

<{cfset arrayElement="Third Array Element">

<cfset myArray[arrayIndex]=arrayElement>

<{cfset myArray[arrayIndex + 1]="Fourth Array Element">
<cfdump var=ffmyArrayip>

Note: The IsDefinedfunction does not test the existence of array elements. To test whether
data exists at an array index, copy the array element to a simple variable and use the
IsDefined function to test the existence of the copy.

Creating arrays

In ColdFusion, you declare an array by assigning a variable name to the new array and
specifying its dimensions, as follows:

<{cfset mynewarray=ArrayNew(x)>
where x is the number of dimensions (from 1 to 256) in the array that you want to create.

Once you declare an array, you can add array elements, which you can then reference
using the elements’ indexes.

For example, suppose you declare a 1D array called "firstname":
<{cfset firstname=ArrayNew(1)>

The array firstname holds no data and is of an unspecified length. Next you add data to
the array:

<cfset firstname[1]="Coleman">
<cfset firstname[2]="Charlie">
<{cfset firstname[3]="Dexter">

After you add these names to the array, it has a length of 3.

90

Chapter 5 Using Arrays and Structures

Creating complex multidimensional arrays

ColdFusion supports dynamic multidimensional arrays. When you declare an array with
the ArrayNew function, you specify the number of dimensions. You can create an
asymmetrical array or increase an existing array’s dimensions by nesting arrays as array
elements.

It is important to know that when you assign one array (arrayl) to an element of another
array (array2), arrayl is copied into array2. The original copy of array1 still exists,
independent of array2. You can then change the contents of the two arrays
independently.

The best way to understand an asymmetrical array is by looking at it. The following
example creates an asymmetric, multidimensional array and the cfdump tag displays the
resulting array structure. Several array elements do not yet contain data.

{cfset myarray=ArrayNew(1)>

<{cfset myotherarray=ArrayNew(2)>
<{cfset biggerarray=ArrayNew(3)>

<{cfset biggerarray[11[11[1]=myarray>

<cfset biggerarray[1][1][11[10]1=3>

<cfset biggerarray[2][1][1]=myotherarray>
<cfset biggerarray[2]1[11[1][4][2]="five deep">

<{cfset biggestarray=ArrayNew(3)>

<{cfset biggestarray[31[11[1]=biggerarray>

<cfset biggestarray[3][1][1]1[2]1[3][1]="This is complex">
<cfset myarray[3]="Can you see me">

<cfdump var=ffbiggestarrayi>

<cfdump var=fmyarrayf>

Note: The cfdump tag displays the entire contents of an array. It is an excellent tool for
debugging arrays and array-handling code.

Reviewing the code

The following table describes the code:

Code Description
<cfset myarray=ArrayNew(1)> Create three empty arrays, a 1D array, a 2D array,
<cfset myotherarray=ArrayNew(2)> and a 3D array.

<cfset biggerarray=ArrayNew(3)>

{cfset biggerarray[1][1][1]=myarray> Make element [1][1][1] of the 3D bigerarray array
<cfset biggerarray[1][11[1][10]=3> be a copy of the 1D array. Assign 3 to the
[1][11[1][10O] element of the resulting array.

The biggerarray array is now asymmetric. For
example, it does not have a [1][1][2][1] element.

{cfset biggerarray[2][1][1]= Make element [2][1][1] of the 3D array be the 2D
myotherarray> array and assign the [2][1][1][4][2] element the
{cfset biggerarray[2][1][11[41[2]=

) value "reality”.
"reality">

The biggerarray array is now even more
asymmetric.

Basic array techniques o

Code Description

<cfset biggestarray=ArrayNew(3)> Create a second 3D array. Make the [3][1][1]

<Cf5§? bi ggeSta;”ay[ﬂ (1101 element of this array be a copy of the bigerarray
=biggerarray)

<cfset biggestarray[31013(1102103101] array, and assign element [3][1][11[2]1[3]1[1].
="This is complex"> The resulting array is very complex and

asymmettric.

<cfset myarray[3]="Can you see me"> Assign a value to element [3] of myarray.

<fdump var=biggestarrayi>
 Use cfdump to view the structure of biggestarray

<cfdump var=fmyarrayf> and myarray.

Notice that the "Can you see me" entry appears in
myarray, but not in biggestarray, because
biggestarray has a copy of the original myarray
values and is not affected by the change to
myarray.

Adding elements to an array

You can add an element to an array by assigning the element a value or by using a
ColdFusion function.

Adding an array element by assignment

You can add elements to an array by defining the value of an array element, as shown in
the following cfset tag:

<{cfset myarray[5]="Test Message">

If an element does not exist at the specified index, ColdFusion creates it. If an element
already exists at the specified index, ColdFusion replaces it with the new value. To
prevent existing data from being overwritten, use the ArrayInsertAt function, as
described in the next section.

If elements with lower-number indexes do not exist, they remain undefined. You must
assign values to undefined array elements before you can use them. For example, the
following code creates an array and an element at index 4. It outputs the contents of
element 4, but generates an error when it tries to output the (nonexistent) element 3.
{cfset myarray=ArrayNew(1)>
<cfset myarray[4]=4>
{cfoutput>

myarray4d: fmyarray[41{Kbr>

myarray3: fmyarray[31#

</cfoutput>

Adding an array element with a function

You can use the following array functions to add data to an array:

Function Description

ArrayAppend Creates a new array element at the end of the array.

92 Chapter 5 Using Arrays and Structures

Function Description

ArrayPrepend Creates a new array element at the beginning of the array.

ArraylnsertAt Inserts an array element at the specified index position.

Because ColdFusion arrays are dynamic, if you add or delete an element from the array,
any higher-numbered index values all change. For example, the following code creates a
two element array and displays the array contents. It then uses ArrayPrepend to insert a
new element at the beginning of the array and displays the result. The data that was
originally in indexes 1 and 2 is now in indexes 2 and 3.

<l--- Create an array with three elelemts --->
<{cfset myarray=ArrayNew(1)>
<cfset myarray[1]="Original First Element">
<cfset myarray[2]="0riginal Second Element">
<l--- Use cfdump to display the array structure --->
<cfdump var=ffmyarrayip>

<l--- Add a new element at the beginning of the array --->
<cfscript>

ArrayPrepend(myarray, "New First Element");
</cfscript>
<l--- Use cfdump to display the new array structure --->
<cfdump var=ffmyarrayi>

For more information about these array functions, see CFML Reference.

Deleting elements from an array

Use the ArrayDeleteAt function to delete data from the array at a particular index, instead
of setting the data value to zero or an empty string. If you remove data from an array, the
array resizes dynamically, as the following example shows:

<!--- Create an array with three elements --->
<cfset firstname=ArrayNew(1)>
<{cfset firstname[1]="Robert">

<cfset firstname[2]="Wanda">

<{cfset firstname[3]="Jane">

<{I--- Delete the second element from the array --->
<{cfset temp=ArrayDeleteAt(firstname, 2)>

<I--- Display the array length (2) and its two entries,
which are now "Robert" and "Jane" --->
<cfoutput>
The array now has #fArraylLen(firstname)# indexes

The first entry is #firstname[1]{Kbr>
The second entry is #firstname[2]{Kbr>
</cfoutput>

The ArrayDeleteAt function removed the original second element and resized the array so
that it has two entries, with the second element now being the original third element.

Basic array techniques 93

Copying arrays

You can copy arrays of simple variables (numbers, strings, Boolean values, and date-time
values) by assigning the original array to a new variable name. You do not have to use
ArrayNew to create the new array first. When you assign the existing array to a new
variable, ColdFusion creates a new array and copies the old array’s contents to the new
array. The following example creates and populates a two-element array. It then copies
the original array, changes one element of the copied array and dumps both arrays. As
you can see, the original array is unchanged and the copy has a new second element.

{cfset myArray=ArrayNew(1)>

<cfset myArray[1]="First Array Element">
<cfset myArray[2]="Second Array Element">
<cfset newArray=myArray>

<{cfset newArray[2]="New Array Element 2">
<cfdump var=fmyArrayf>

<cfdump var=fnewArrayip>

If your array contains complex variables (structures, query objects, or external objects
such as COM objects) assigning the original array to a new variable does not make a
complete copy of the original array. The array structure is copied; however, the new array
does not get its own copy of the complex data, only references to it. To demonstrate this
behavior, run the following code:

Create an array that contains a structure.

<cfset myStruct=StructNew()>

<cfset myStruct.keyl="Structure key 1
<cfset myStruct.key2="Structure key 2
<{cfset myArray=ArrayNew(1)>

<{cfset myArray[1]=myStruct>

<cfset myArray[2]="Second array element">

<cfdump var=ffmyArrayf>

Copy the array and dump it.

<cfset myNewArray=myArray>

<cfdump var=fmyNewArrayf>

Change the values in the new array.

<cfset myNewArray[1].keyl="New first array element">
<cfset myNewArray[2]="New second array element">

Contents of the original array after the changes:

<cfdump var=fmyArrayf>

Contents of the new array after the changes:

<cfdump var=fmyNewArrayit>

>
"y

The change to the new array also changes the contents of the structure in the original
array.

To make a complete copy of an array that contains complex variables, use the dupTicate
function.

94

Chapter 5 Using Arrays and Structures

Populating arrays with data

Array elements can store any values, including queries, structures, and other arrays. You
can use a number of functions to populate an array with data, including ArraySet,
ArrayAppend, ArrayInsertAt, and ArrayPrepend. These functions are useful for adding data
to an existing array.

In particular, you should master the following basic techniques:

o Populating an array with the ArraySet function

o DPopulating an array with the cfloop tag

e Populating an array from a query

The following sections describe these techniques.

Populating an array with the ArraySet function

You can use the ArraySet function to populate a 1D array, or one dimension of a
multidimensional array, with some initial value, such as an empty string or zero. This can
be useful if you need to create an array of a certain size, but do not need to add data to it
right away. One reason to do this is so that you can refer to all the array indexes. If you
refer to an array index that does not contain some value, such as an empty string, you get
an error.

The ArraySet function has the following form:

ArraySet (arrayname, startrow, endrow, value)

The following example initializes the array myarray, indexes 1 to 100, with an empty
string:

ArraySet (myarray, 1, 100, "")

Populating an array with the cfloop tag

The cfloop tag provides a common and very efficient method for populating an array.
The following example uses a cf1oop tag and the MonthAsString function to populate a

simple 1D array with the names of the months. A second cfloop outputs data in the array
to the browser.

<{cfset months=arraynew(1)>

<cfloop index="Tloopcount" from=l to=12>
<cfset months[loopcount]=MonthAsString(loopcount)>
</cfloop>

<cfloop index="loopcount" from=1 to=12>
<cfoutput>
ffmonths[1oopcount J#

</cfoutput>
</cfloop>

Populating arrays with data 95

Using nested loops for 2D and 3D arrays

To output values from 2D and 3D arrays, you must employ nested loops to return array
data. With a one-dimensional (1D) array, a single cf1oop is sufficient to output data, as in
the previous example. With arrays of dimension greater than one, you need to maintain
separate loop counters for each array level.

Nesting cfloop tags for a 2D array

The following example shows how to handle nested cf1oop tags to output data from a 2D
array. It also uses nested cfloop tags to populate the array:

<{cfset my2darray=arraynew(2)>
<cfloop index="loopcount" from=l to=12>
<cfloop index="loopcount2" from=l to=2>
<cfset my2darray[Toopcount][Toopcount2]=(Toopcount * Toopcount?)>
</cfloop>
</cfloop>

<p>The values in my2darray are currently:</p>

<cfloop index="OuterCounter" from="1" to="#fArraylLen(my2darray)#">
<cfloop index="InnerCounter" from="1"
to="#fArraylLen(my2darray[OuterCounter)#">
<cfoutput>
[H0uterCounterdt][#InnerCounterf1:
fimy2darray[OuterCounter][InnerCounterJ{

</cfoutput>
</cfloop>
</cfloop>

Nesting cfloop tags for a 3D array

For 3D arrays, you simply nest an additional cfloop tag. (This example does not set the
array values first to keep the code short.)

<cfloop index="Diml" from="1" to="#ArrayLen(my3darray)#">
<cfloop index="Dim2" from="1" to="#ArraylLen(my3darray[Diml1])#">
<cfloop index="Dim3" from="1"
to="4#fArrayLen(my3darray[Dim11[Dim2]1)#">
<cfoutput>
<O>[HDIMIAFI DI [HDim3gF1
#my3darray[DimlI[Dim2]1[Dim31#

</cfoutput>
</cfloop>
</cfloop>
</cfloop>

96

Chapter 5

Using Arrays and Structures

Populating an array from a query

When populating an array from a query, keep the following things in mind:

¢ You cannot add query data to an array all at once. A looping structure is generally
required to populate an array from a query.

¢ You can reference query column data using array-like syntax. For example,
myquery.col_name[1] references data in the first row in the col_name column of the

myquery query.
¢ Inside a cfloop query=loop, you do not have to specify the query name to reference
the query’s variables.

You can use a cfset tag with the following syntax to define values for array indexes:
<cfset arrayNamel index]=queryColumnl row]>

In the following example, a cfloop tag places four columns of data from a sample data
source into an array, myarray.

<!--- Do the query --->

<cfquery name="test" datasource="cfsnippets">
SELECT Emp_ID, LastName, FirstName, Email
FROM Employees

</cfquery>

<l--- Declare the array --->
<{cfset myarray=arraynew(2)>

<l--- Populate the array row by row --->
<cfloop query="test">
<cfset myarray[CurrentRow][1]=Emp_ID>
<cfset myarray[CurrentRow][2]=LastName>
<cfset myarray[CurrentRow][3]=FirstName>
<{cfset myarray[CurrentRow][4]=Email>
</cfloop>

<!I--- Now, create a loop to output the array contents --->
<cfset total_records=test.recordcount>
<cfloop index="Counter" from=1 to="#Total_Records#">
<cfoutput>
ID: #MyArray[Counter][114,
LASTNAME : MyArray[Counter][2]#,
FIRSTNAME: #MyArray[Counter][314#,
EMAIL: fMyArray[Counter][41#

</cfoutput>
</cfloop>

This example uses the query object built-in variable CurrentRow to index the first
dimension of the array.

Populating arrays with data 97

Array functions

The following functions are available for creating, editing, and handling arrays:

Function Description

ArrayAppend Appends an array element to the end of a specified array.
ArrayAvg Returns the average of the values in the specified array.
ArrayClear Deletes all data in a specified array.

ArrayDeleteAt

ArraylInsertAt

ArraylstEmpty
Arraylen
ArrayMax
ArrayMin
ArrayNew
ArrayPrepend
ArrayResize
ArraySet

ArraySort

ArraySum
ArraySwap

ArrayTolist

IsArray

ListToArray

Deletes an element from a specified array at the specified index and
resizes the array.

Inserts an element (with data) in a specified array at the specified index
and resizes the array.

Returns True if the specified array is empty of data.

Returns the length of the specified array.

Returns the largest numeric value in the specified array.

Returns the smallest numeric value in the specified array.

Creates a new array of specified dimension.

Adds an array element to the beginning of the specified array.

Resets an array to a specified minimum number of elements.

Sets the elements in a 1D array in a specified range to a specified value.

Returns the specified array with elements sorted numerically or
alphanumerically.

Returns the sum of values in the specified array.
Swaps array values in the specified indexes.

Converts the specified 1D array to a list, delimited with the character
you specify.

Returns True if the value is an array.

Converts the specified list, delimited with the character you specify, to
an array.

For more information about each of these functions, see CFML Reference.

o8

Chapter 5 Using Arrays and Structures

About structures

ColdFusion structures consist of key-value pairs. Structures let you build a collection of

related variables that are grouped under a single name. You can define ColdFusion

structures dynamically.

You can use structures to refer to related values as a unit, rather than individually. To

maintain employee lists, for example, you can create a structure that holds personnel
y ¥

information such as name, address, phone number, ID numbers, and so on. Then you

can refer to this collection of information as a structure called employee rather than as a

collection of individual variables.

A structure’s key must be a string. The values associated with the key can be any valid

ColdFusion value or object. It can be a string or integer, or a complex object such as an

array or another structure. Because structures can contain any kind of data they provide a

very powerful and flexible mechanism for representing complex data.

Structure notation

ColdFusion supports two types of notation for referencing structure contents. Which
notation you use depends on your requirements:

Notation

Description

Object.property

Associative arrays

You can refer to a property, prop, of an object, obj, as obj.prop.
This notation is useful for simple assignments, as in this example:

depts.John="Sales"

Use this notation only when you know the property names (keys)
in advance and they are strings, with no special characters,
numbers, or spaces. You cannot use the dot notation when the
property, or key, is dynamic.

If you do not know the key name is in advance, or it contains
spaces, numbers or special characters, you can use associative
array notation. This notation uses structures as arrays with string
indexes, for example,

depts["John"]="Sales"
depts[employeeName]="Sales"

You can use a variable (such as employeeName) as an
associative array index. Therefore, you must enclose any literal
key names in quotes.

For information on using associative array references containing
variables, see “Dynamically constructing structure references,” in
Chapter 4.

About structures Q9

Referencing complex structures

When a structure contains another structure, you reference the data in the nested
structure by extending either object.property or associative array notation. You can even
use a mixture of both notations.

For example, if structurel has a key keyl whose value is a structure that has keys
struct2keyl, struct2key2, and so on, you can use any of the following references to access
the data in the first key of the embedded structure:

Structurel.keyl.Struct2keyl
Structurel["keyl"].Struct2keyl
Structurel.keyl["Struct2keyl"]
Structurel["keyl"J["Struct2keyl"]

The following example shows various ways you can reference the contents of a complex
structure:

{cfset myArray=ArrayNew(1)>
<cfset myArray[1]="2">

<{cfset myArray[2]="3">

<cfset myStructZ=StructNew()>
{cfset myStruct?.structzkeyl="4">
<cfset myStruct2.struct2key?="5">
<cfset myStruct=StructNew()>
{cfset myStruct.keyl="1">

<cfset myStruct.key2=myArray>
<cfset myStruct.key3=myStruct2>
<cfdump var=fmyStructf>

<{cfset keylVar="keyl">
<{cfset key2Var="key2">
<{cfset key3Var="key3">
{cfset varz2="2">

<cfoutput>

Value of the first key

fimystruct. keylfbr>

fmystruct["keyl" J{#br>

Jmystruct[keylVarli

Value of the second entry in the key2 array

JmyStruct . key2[21{Kbr>
fmyStruct["key2"1[21#Kbr>
fmyStructlkey2Varl[21ibr>
fmyStructlkey2Varl[var2 1#

Value of the struct2key? entry in the key3 structure

JmyStruct.key3.struct2key2iKbr>
fmyStruct["key3"I["struct2key2" J#

JmyStruct[key3Var]["struct2key2" 1#

JimyStruct.key3["struct2key2" 1{K<Kbr>
fimyStruct["key3"].struct2key2f

</cfoutput>

100 Chapter5 Using Arrays and Structures

Reviewing the code

The following table describes the code:

Code

Description

<cfset myArray=ArrayNew(1)>
<{cfset myArray[1]="2">

<cfset myArray[2]="3">

<cfset myStruct2=StructNew()>
<cfset myStruct2.struct2keyl="4">
<cfset myStruct?.struct2key?2="5">
<cfset myStruct=StructNew()>
<cfset myStruct.keyl="1">

<cfset myStruct.key2=myArray>
<cfset myStruct.key3=myStruct2>

<cfdump var=fmyStructi>

<cfset keylVar="keyl">
<{cfset key2Var="key2">
<cfset key3Var="key3">
<cfset var2="2">

<cfoutput>

Value of the first key

Jmystruct.keylf

fmystruct["keyl"J#

#mystructlkeylVarJ#

Value of the second entry in the
key? array

JmyStruct.key2[214br>
fmyStruct["key2"1[2#

JmyStruct[key2Var][21#br>
fhmyStruct[key2VarI[var2]#br>

Value of the struct2key? entry in

the key3 structure

fimyStruct.key3.struct2key2f

JmyStruct["key3"I["struct2key2" HKbr>
fimyStructlkey3Var]["struct2key2" 1#

fmyStruct.key3["struct2key2" 1{

fmyStruct["key3"].struct2key2i

</cfoutput>

Create a structure with three entries: a
string, an array, and an embedded structure.

Display the complete structure.

Create variables containing the names of
the myStruct keys and the number 2.

Output the value of the structure’s keyl
(string) entry using the following notation:
e object.property notation

e associative array notation with a
constant

e associative array notation with a variable

Output the value of the second entry in the
structure’s key?2 array using the following
notation:

e object.property notation

e associative array notation with a
constant

e associative array notation with a variable

e associative array notation with variables
for both the array and the array index

Output the value of second entry in the
structure’s key3 embedded structure using
the following notation:

e object.property notation

e associative array notation with two
constants

e associative array notation with a variable
and a constant

e object.property notation followed by
associative array notation

e associative array notation followed by
object.property notation

About structures 101

Creating and using structures

This section explains how to create and use structures in ColdFusion. The sample code in
this section uses a structure called employee, which is used to add new employees to a
corporate information system.

Creating structures

You can create a structure by creating a first key-pair or by using the ColdFusion
StructNew function.

Creating structures by assigning values

You can create a structure by assigning a key-value pair. For example, the following line
creates a structure named myStruct with one element, name, that has the value
Macromedia.

<cfset myStruct.name="Macromedia">

Creating structures using a function

You can create structures by assigning a variable name to the structure with the
StructNew function as follows:

<cfset mystructure=StructNew()>

For example, to create a structure named departments, use the following syntax:
<cfset departments=StructNew()>

This creates an empty structure to which you can add data.

Use this technique to create structures if your application must run on ColdFusion Server
versions 5 and earlier.

Adding data elements to structures

You add an element to a structure by assigning the element a value or by using a
ColdFusion function. It is cleaner and more efficient to use direct assignment, so only
this technique is described.

You add structure key-value pairs by defining the value of the structure key, as shown in
the following example:

<{cfset myNewStructure.keyl="A new structure with a new key">
<cfdump var=ffmyNewStructurei>

<cfset myNewStructure.key?="Now I’ve added a second key">
<cfdump var=fmyNewStructureft>

Updating values in structures

You can update structure element values by assignment or by using the StructUpdate
function. Direct assignment results in simpler code than using a function, so only the
assignment technique is described.

102

Chapter 5 Using Arrays and Structures

To update a structure value, assign the key a new value. For example, the following code
uses cfset and object.property notation to create a new structure element called
departments.John, and changes John’s department from Sales to Marketing. It then uses
associative array notation to change his department to Facilities. Each time the
department changes, it displays the results:

<cfset departments=structnew()>
<{cfset departments.John = "Sales">

<cfoutput>

Before the first change, John was in the ffdepartments.John# Department

</cfoutput>
<cfset Departments.John = "Marketing">
<cfoutput>

After the first change, John is in the {fkdepartments.John# Department

</cfoutput>
<cfset Departments["John"] = "Facilities">
<cfoutput>

After the second change, John is in the ftdepartments.Johnst Department

</cfoutput>

Getting information about structures and keys

The following sections describe how to use ColdFusion functions to find information
about structures and their keys.

Getting information about structures
To find out if a given value represents a structure, use the IsStruct function, as follows:
IsStruct(variable)

This function returns True if variable is a ColdFusion structure. (It also returns True if
variable is a Java object that implements the java.util. Map interface.)

Structures are not indexed numerically, so to find out how many name-value pairs exist
in a structure, use the StructCount function, as in the following example:

StructCount(employee)

To discover whether a specific Structure contains data, use the StructIsEmpty function, as
follows:

Structlskmpty(structure_name)

This function returns True if the structure is empty, and False if it contains data.

Creating and using structures 103

Finding a specific key and its value

To determine whether a specific key exists in a structure, use the StructkeyExists
function, as follows:

StructKeyExists(structure_name, "key_name")

Do not put the name of the structure in quotation marks, but you do put the key name in
quotation marks. For example, the following code displays the value of the

MyStruct. MyKey only if it exists:

<cfif StructKeyExists(myStruct, "myKey")>

<cfoutput> fhmystruct.myKeyi</cfoutput>

</cfif>

You can use the StructKeyExists function to dynamically test for keys by using a variable
to represent the key name. In this case, you do not put the variable in quotes. For
example, the following code loops through the records of the GetEmployees query and
tests the myStruct structure for a key that matches the query’s LastName field. If
ColdFusion finds a matching key, it displays the Last Name from the query and the
corresponding entry in the structure.

<cfloop query="GetEmployees">

<cfif StructKeyExists(myStruct, LastName)>

<cfoutput>ffLastNamesf: ffmystruct[LastNamel#</cfoutput>

</cfif>

</cfloop>

If the name of the key is known in advance, you can also use the ColdFusion IsDefined
function, as follows:

IsDefined("structure_name. key")>
However, if the key is dynamic, or contains special characters, you must use the

StructKeyExists function.

Note: Using StructKeyExists to test for the existence of a structure entry is more efficient
than using IsDefined. ColdFusion scopes are available as structures and you can improve
efficiency by using StructKeyExists to test for the existence of variables.

Getting a list of keys in a structure

To get a list of the keys in a CFML structure, you use the StructKeyList function, as
follows:

<cfset temp=StructKeylist(structure_name, [delimiter])>
You can specify any character as the delimiter; the default is a comma.
Use the StructKeyArray function to returns an array of keys in a structure, as follows:

{cfset temp=StructKeyArray(structure_name)>

Note: The StructKeylListand StructKeyArray functions do not return keys in any particular
order. Use the ListSort or ArraySort functions to sort the results.

104

Chapter 5 Using Arrays and Structures

Copying structures

ColdFusion provides several ways to copy structures and create structure references. The
following table lists these methods and describes their uses:

Technique

Use

Duplicate
function

StructCopy
function

Variable
assignment

Makes a complete copy of the structure. All data is copied from the
original structure to the new structure, including the contents of
structures, queries, and other objects. As a result changes to one copy
of the structure have no effect on the other structure.

This function is useful when you want to move a structure completely
into a new scope. In particular, if a structure is created in a scope that
requires locking (for example, Application), you can duplicate it into a
scope that does not require locking (for example, Request), and then
delete it in the scope that requires locking

Makes a shallow copy of a structure. It creates a new structure and
copies all simple variable and array values at the top level of the original
structure to the new structure. However, it does not make copies of any
structures, queries, or other objects that the original structure contains,
or of any data inside these objects. Instead, it creates a reference in the
new structure to the objects in the original structure. As a result, any
change to these objects in one structure also changes the
corresponding objects in the copied structure.

The Duplicate replaces this function for most, if not all, purposes.

Creates an additional reference, or alias, to the structure. Any change to
the data using one variable name changes the structure that you access
using the other variable name.

This technique is useful when you want to add a local variable to another
scope or otherwise change a variable’s scope without deleting the
variable from the original scope.

The following example shows the different effects of copying, duplicating, and assigning

structure variables:

Create a new structure

<cfset myNewStructure=StructNew()>
<{cfset myNewStructure.keyl="1">

<{cfset myNewStructure.key2="2">

<cfset myArray=ArrayNew(1)>

<cfset myArray[1]="3">

<{cfset myArray[2]="4">

<cfset myNewStructure.key3=myArray>
<cfset myNewStructurez=StructNew()>
<{cfset myNewStructurez.StructZkeyl="5">
<cfset myNewStructure?.Struct2key?="6">
<cfset myNewStructure.keyd=myNewStructure2>
<cfdump var=ffmyNewStructuref>

A StructCopy copied structure

<{cfset CopiedStruct=StructCopy(myNewStructure)>
<cfdump var=ffCopiedStructi>

A Duplicated structure

Creating and using structures 105

<cfset dupStruct=Duplicate(myNewStructure)>
<cfdump var=fdupStructip

A new reference to a structure

<{cfset structRef=myNewStructure>

<cfdump var=jfstructRefi>

Change a string, array element, and structure value in the StructCopy copy.

<cfset CopiedStruct.keyl="1A">

<{cfset CopiedStruct.key3[2]="4A">
<{cfset CopiedStruct.key4.StructZkey?="6A">
Original structure

<cfdump var=ffmyNewStructuref>

Copied structure

<cfdump var=ffCopiedStructi>

DupTlicated structure

<cfdump var=ffDupStructi>

Structure reference

<cfdump var=fstructRefip>

Change a string, array element, and structure value in the Duplicate

<cfset DupStruct.keyl="1B">

<cfset DupStruct.key3[2]="4B">

<cfset DupStruct.key4.Struct2key?="68">
Original structure

<cfdump var=ffmyNewStructuref>

Copied structure

<cfdump var=ffCopiedStructi>

Duplicated structure

<cfdump var=DupStructip>

Structure reference

<cfdump var=fstructRefip>

Change a string, array element, and structure value in the reference

<{cfset structRef.keyl="1C">

<{cfset structRef.key3[2]="4C">

<{cfset structRef.key4.Struct2key2="6C">
Original structure

<cfdump var=ffmyNewStructuref>

Copied structure

<cfdump var=ffCopiedStructi>

Duplicated structure

<cfdump var=ffDupStructip>

Structure reference

<cfdump var=fstructRefip

Clear the original structure

<{cfset foo=structclear(myNewStructure)>
Original structure:

<cfdump var=fmyNewStructuref>

Copied structure

<cfdump var=ffCopiedStructi>

106 Chapter5 Using Arrays and Structures

Duplicated structure

<cfdump var=fDupStructip>

Structure reference:

<cfdump var=ffstructRefi>

Deleting structure elements and structures

To delete a key and its value from a structure, use the StructDelete function, as follows:
StructDelete(structure_name, key [, indicateNotExisting 1)

The indicateNotExisting argument tells the function what to do if the specified key does
not exist. By default, the function always returns True. However, if you specify True for
the indicateNotExisting argument, the function returns True if the key exists and False if it
does not.

You can also use the StructClear function to delete all the data in a structure but keep the
structure instance itself, as follows:

StructClear(structure_name)

If you use StructClear to delete a structure that you have copied using the StructCopy
function, the specified structure is deleted, but the copy is unaffected.

If you use StructClear to delete a structure that has a multiple references, the function
deletes the contents of the structure and all references point to the empty structure, as
shown in the following example:

<cfset myStruct.Keyl="Macromedia">
Structure before StructClear

<cfdump var="{myStruct#">

<cfset myCopy=myStruct>

<cfset StructClear(myCopy)>

After Clear:

myStruct: <cfdump var="fmyStruct#">

myCopy: <cfdump var="#fmyCopy#">

Looping through structures

You can loop through a structure to output its contents, as shown in the following
example:

<l--- Create a structure and set its contents --->
<cfset departments=structnew()>

<cfset val=StructlInsert(departments, "John", "Sales")>
<{cfset val=Structlnsert(departments, "Tom", "Finance")>
<cfset val=StructInsert(departments, "Mike", "Education")>

<!--- Build a table to display the contents --->
<cfoutput>
<table cellpadding="2" cellspacing="2">
<tr>
<td>Employee</td>
<td>Department</td>

</tr>
<l--- Use cfloop to loop through the departments structure.
The item attribute specifies a name for the structure key. --->

Creating and using structures 107

<cfloop collection=ffdepartmentss# item="person">
<tr>
<td>ffpersonfi</td>
<td>ffDepartments[personi</td>
</tr>
</cfloop>
</table>
</cfoutput>

108 Chapter5 Using Arrays and Structures

Structure example

Structures are particularly useful for grouping together a set of variables under a single
name. The example in this section uses structures collect information from a form, and
to submit that information to a custom tag, named cf_addenployee. For information on
creating and using custom tags, see Chapter 10, “Creating and Using Custom CFML
Tags” on page 197.

Example file newemployee.cfm

The following ColdFusion page shows how to create structures and use them to add data
to a database. It calls the cf_addemployee custom tag, which is defined in the
addemployee.cfm file.

<htm1>
<head>
<title>Add New Employees</title>
</head>

<body>
<h1>Add New Employees</h1>
<!--- Action page code for the form at the bottom of this page --->

<!--- Establish parameters for first time through --->
<cfparam name="Form.firstname" default="">

<cfparam name="Form.lastname" default="">

<cfparam name="Form.email" default="">

<cfparam name="Form.phone" default="">

<{cfparam name="Form.department" default="">

<l--- If at Teast the firstaname form field is passed, create
a structure named employee and add values --->
<cfif f#fForm.firstnamef eq "">
<p>Please fill out the form.</p>
<cfelse>
<cfoutput>
<cfscript>
employee=StructNew();
employee.firstname = Form.firstname;
employee.lastname = Form.Tastname;
employee.email = Form.email;
employee.phone = Form.phone;
employee.department = Form.department;
</cfscript>

<l--- Display results of creating the structure --->
First name is #StructFind(employee, "firstname")#

Last name is #StructFind(employee, "Tastname")iKbr>
EMail is #StructFind(employee, "email"){br>
Phone is #StructFind(employee, "phone")#

Department is #StructFind(employee, "department™)#

</cfoutput>

Structure example 109

<!--- Call the custom tag that adds employees --->
<{cf_addemployee empinfo="#femployeeft">
</cfif>

<l--- The form for adding the new employee information --->

<hr>

<form action="newemployee.cfm" method="Post">

First Name:

<input name="firstname" type="text" hspace="30" maxlength="30">

Last Name:

<input name="Tastname" type="text" hspace="30" maxlength="30">

EMail:

<input name="email" type="text" hspace="30" maxlength="30">

Phone:

<input name="phone" type="text" hspace="20" maxlength="20">

Department:

<input name="department" type="text" hspace="30" maxlength="30">

<input type="Submit" value="0K">
</form>

</body>

</html>

Reviewing the code

The following table describes the code:

Code Description
<cfparam name="Form.firstname" default=""> Set default values of all form fields so that they exist the
<cfparam name="Form.Tastname" default=""> first time this page is displayed and can be tested.

<cfparam name="Form.email" default="">
<{cfparam name="Form.phone" default="">
<cfparam name="Form.department" default="">

<cfif #form. firstnameff eq ""> Test the value of the form’s firstname field. This field is
Please fill out the form.
 required. The test is False the first time the page displays.

If there is no data in the Form.firstname variable, display a
message requesting the user to fill the form.

{cfelse> If Form.firstname contains text, the user submitted the
<cfoutput> form.
<cfscript>)
employee=StructNew(); Use CFScript to create a new structure named employee
employee.firstname = Form.firstname; and fill it with the form field data.
employee.Tastname = Form.lastname; Then display the contents of the structure

employee.email = Form.email;
employee.phone = Form.phone;
employee.department = Form.department;
</cfscript>

First name is ffemployee.firstnamef

Last name is ffemployee.lastnameft

EMail is ffemployee.emailiKbr>

Phone is ffemployee.phoneft

Department is ffemployee.departmentf

</cfoutput>

110 Chapter 5 Using Arrays and Structures

Code

Description

cf_addemployee empinfo="#duplicate(employee)#">
</cfif>

<form action="newemployee.cfm" method="Post">

First Name:

<input name="firstname" type="text" hspace="30"
maxlength="30">

Last Name:

<input name="Tastname" type="text" hspace="30"
max1ength="30">

EMail:

<input name="email" type="text" hspace="30"
maxlength="30">

Phone:

<input name="phone" type="text" hspace="20"
maxlength="20">

<p>Department:

<input name="department" type="text" hspace="30"
maxlength="30">

<input type="Submit" value="0K">

</form>

Call the cf_addemployee custom tag and pass it a copy of
the employee structure in the empinfo attribute.

The duplicate function ensures that the custom tag gets a
copy of the employee structure, not the original. While
this is not necessary in this example, it is good practice
because it prevents the custom tag from modifying the
calling page’s structure contents.

The data form. When the user clicks Submit, the form
posts the data to this ColdFusion page.

Example file addemployee.cfm

The following file is an example of a custom tag used to add employees. Employee
information is passed through the employee structure (the empinfo attribute). For
databases that do not support automatic key generation, you must also add the Emp_ID.

<cfif StructIsEmpty(attributes.empinfo)>

<cfoutput>

Error. No employee data was passed.

</cfoutput>

<{cfexit method="ExitTag">

<cfelse>
<I--- Add the employee

-

<cfquery name="AddEmployee" datasource="cfsnippets">
INSERT INTO Employees
(FirstName, LastName, Email, Phone, Department)

VALUES (

'frattributes.

"flattributes.

"flattributes.

'frattributes.

"flattributes.
</cfquery>

<Jefif>

empinfo
empinfo
empinfo
empinfo
empinfo

firstnamedt' ,
.lastnameft'
cemailf'
.phoneft' ,
.department#t')

Structure example m

<cfoutput>

<hr>EmpToyee Add Complete
</cfoutput>
Reviewing the code

The following table describes the code:

Code Description
<cfif StructIskEmpty(Attributes.empinfo)> If the custom tag was called without an
<cfoutput> empinfo attribute, display an error message
Error. No employee data was passed. and exit the tag
</cfoutput>
<cfexit method="ExitTag">
{cfelse> Add the employee data passed in the

<cfquery name="AddEmpTloyee" datasource=
"cfsnippets">

INSERT INTO EmpTloyees
(FirstName, LastName, Email, Phone,
Department)

VALUES (
'ffattributes.empinfo.firstnamef' ,
'flattributes.empinfo.lastnameft' ,
'"fattributes.empinfo.emails' ,
'flattributes.empinfo.phoneft' ,
'fattributes.empinfo.department#')

</cfquery>

</cfif>

<cfoutput>
<hr>Employee Add Complete
</cfoutput>

empinfo structure to the Employees table of
the cfsnippets database.

Use direct references to the structure entries,
not structfind functions.

If the database does not support automatic
generation of the Emp_ID key, you must add
an Emp_ID entry to the form and add it to the
query.

Display a completion message. This code
does not have to be inside the cfelse block
because the cfexit tag prevents it from being
run if the empinfo structure is empty.

12

Chapter 5 Using Arrays and Structures

Structure functions

You can use the following functions to create and manage structures in ColdFusion

applications. The table describes each function’s purpose and provides specific, but

limited, information that can assist you in determining whether to use the function

instead of other techniques:

Function Description

Duplicate Returns a complete copy of the structure.

IsStruct Returns True if the specified variable is a ColdFusion structure or a
Java object that implements the java.util. Map interface.

StructAppend Appends one structure to another.

StructClear

StructCopy

StructCount
StructDelete

StructFind

StructFindKey

StructFindValue

StructGet

Structlnsert

StructIskEmpty

StructKeyArray

StructKeyExists

StructKeylList

StructNew

Removes all data from the specified structure.

Returns a "shallow" copy of the structure. Allembedded objects are
references to the objects in the original structure. The Duplicate
function has replaced this function for most purposes.

Returns the number of keys in the specified structure.
Removes the specified item from the specified structure.

Returns the value associated with the specified key in the specified
structure. This function is redundant with accessing structure
elements using associative array notation.

Searches through a structure for the specified key name and
returns an array containing data on the found key or keys.

Searches through a structure for the specified simple data value
(for example, a string or number) and returns an array containing
information on the value location in the structure.

Returns a reference to a substructure contained in a structure at the
specified path. This function is redundant with using direct
reference to a structure. If you accidentally use this function on a
variable that is not a structure, it replaces the value with an empty
structure.

Inserts the specified key-value pair into the specified structure.
Unlike a direct assignment statement, this function generates an
error by default if the specified key exists in the structure.

Indicates whether the specified structure contains data. Returns
True if the structure contains no data, and False if it does contain
data.

Returns an array of keys in the specified structure.

Returns True if the specified key is in the specified structure. You
can use this function in place of the IsDefined function to check for
the existence of variables in scopes that are available as structures.

Returns a list of keys in the specified structure.

Returns a new structure.

Structure functions 13

Function Description

StructSort Returns an array containing the key names of a structure in the
order determined by the sort criteria.

StructUpdate Updates the specified key with the specified value. Unlike a direct
assignment statement, this function generates an error if the
structure or key does not exist.

All functions except StructDelete throw an exception if a referenced key or structure does
not exist.

For more information on these functions, see CFML Reference.

14 Chapter 5 Using Arrays and Structures

CHAPTER 6
Extending ColdFusion Pages with

CFML Scripting

ColdFusion MX offers a server-side scripting language, CFScript, that provides
ColdFusion functionality in script syntax. This JavaScript-like language gives developers
the same control flow as ColdFusion, but without tags. You can also use CEScript to
write user-defined functions that you can use anywhere that a ColdFusion expression is
allowed.

This chapter describes the CFScript language’s functionality and syntax, and provides
information on using CFScript effectively in ColdFusion pages.

Contents

® ADOUE CESCIPT vttt ettt 116
o The CEScript [anguagec.cccovviricuiiiiiiiiiiiicceeecc e 118
o Using CESCIIpt STAtEMENTS ..vouvviiiiiiiiiiiiiiiiice s 122
o Handling eXCeptionsccoecirieiriiinieiriciricercttcetee e 129
® CESCIIPt @XamPle .oueeviieiiieiiieiiieict ettt 130

15

About CFScript

CFScript is a language within a language. It is a scripting language that is similar to
JavaScript but is simpler to use. Also, unlike JavaScript, CFScript only runs on the
ColdFusion Server; it does not run on the client system. CFScript code can use all the
ColdFusion functions and expressions, and has access to all ColdFusion variables that are
available in the script’s scope.

CFScript provides a compact and efficient way to write ColdFusion logic. Typical uses of
CFScript include the following:

¢ Simplifying and speeding variable setting

¢ Building compact JavaScript-like flow control structures

¢ Creating user-defined functions

Because you use functions and expressions directly in CFScript, you do not have to
surround each assignment or function in a cfset tag. Also, CFScript assignments are
often faster than cfset tags.

CFScript provides a set of decision and flow-control structures that are more familiar
than ColdFusion tags to most programmers.

In addition to variable setting, other operations tend to be slightly faster in CFScript than
in tags.

ColdFusion 5 and later releases let you use CFScript to create user-defined functions, or
UDFs (also known as custom functions). You call UDFs in the same manner that you
call standard ColdFusion functions. UDFs are to ColdFusion built-in functions what
custom tags are to ColdFusion built-in tags. Typical uses of UDFs include data
manipulation and mathematical calculation routines.

You cannot include ColdFusion tags in CFScript. However, a number of functions and
CFScript statements are equivalent to commonly used tags. For more information, see
“CFScript functional equivalents to ColdFusion tags” on page 120.

Comparing tags and CFScript

The following examples show how you can use CFML tags and CFScript to do the same
thing. Each example takes data submitted from a form and puts it in a structure; if the
form does not have a last name and department field, it displays a message.

Using CFML tags

<cfif IsDefined("Form.submit")>

<cfif (Form.lastname NEQ "") AND (Form.department NEQ "")>
<cfset employee=structnew()>
<cfset employee.firstname=Form.firstname>
<cfset employee.lastname=Form.lastname>
<cfset employee.email=Form.email>
<{cfset employee.phone=Form.phone>
<cfset employee.department=Form.department>
<cfoutput>

Adding #fForm.firstnames#t #Form.Tastnamefi

</cfoutput>

<cfelse>
<cfoutput>

16 Chapter 6 Extending ColdFusion Pages with CFML Scripting

You must enter a Last Name and Department.

</cfoutput>
<Jefif>
<Jefif>

Using CFScript
{cfscript>
if (IsDefined("Form.submit"))
{
if ((Form.lastname NEQ "") AND (Form.department NEQ ""))
{
employee=StructNew();
employee.firstname=Form.firstname;
employee.lastname=Form.Tastname;
employee.email=Form.email;
employee.phone=Form.phone;
employee.department=Form.department;
WriteOutput("Adding #Form.firstnameff #Form.lastnames
");
}
else
WriteOutput("You must enter a Last Name and Department.
");
}
</cfscript>

About CFScript "7

The CFScript language

This section explains the syntax of the CFScript language.

Identifying CFScript
You enclose CFScript regions inside <cfscript> and </cfscript> tags. No other CFML
tags are allowed inside a cfscript region. The following lines show a minimal script:

<cfscript>
a=2;
</cfscript>

Variables

CFScript variables can be of any ColdFusion type, such as numbers, strings, arrays,
queries, and objects. The CFScript code can read and write any variables that are
available in the page that contains the script. This includes all common scope variables,
such as session, application, and server variables.

Expressions

CFScript supports all CEML expressions. CFML expressions include operators (such as
+, -, EQ, and so on), as well as all CFML functions. As in all ColdFusion expressions,
you must use CFML operators, such as LT, GT, and EQ. You cannot use JavaScript
operators, such as <, >, ==, or ++.

For information about CFML expressions, operators, and functions, see Chapter 4,
“Using Expressions and Pound Signs” on page 65.

Statements

CFScript supports the following statements:

assignment for-in try-catch

function call while function (function definition)
if-else do-while var (in custom functions only)
switch-case break return (in custom functions only)
for continue

The following rules apply to statements:

¢ You must put a semicolon at the end of a statement.

o Line breaks are ignored. A single statement can cross multiple lines.

e White space is ignored. For example, it does not matter whether you precede a
semicolon with a space character.

e Use curly braces to group multiple statements together into one logical statement
unit.

e Unless otherwise indicated, you can use any ColdFusion expression in the body of a
statement.

118 Chapter 6 Extending ColdFusion Pages with CFML Scripting

Note: This chapter documents all statements except var and return. For information on
these statements, see “Defining functions in CFScript,” in Chapter 9.

Statement blocks

Comments

Curly brace characters ({ and }) group multiple CFScript statements together so that they
are treated as a single unit or statement. This enables you to create code blocks in
conditional statements, such as the following:
if(score GT 0)
{

result = "positive";

Positives = Positives + 1;
}
In this example, both assignment statements are executed if the score is greater than 0. If
they were not in the code block, only the first line would execute.

You do not have to put brace characters on their own lines in the code. For example, you
could put the open brace in the preceding example on the same line as the i statement,
and some programmers use this style. However, putting at least the ending brace on its
own line makes it easier to read the code and separate out code blocks.

CFScript has two forms of comments: single line and multiline.

A single line comment begins with two forward slashes (/) and ends at the line end; for
example:
//This is a single line comment.
//This is a second single line comment.
A multiline comment starts with a /* marker and continues until it reaches a */ marker;
for example:
/*This is a multiline comment.
You do not need to start each line with a comment indicator.
This is the last line in the comment. */
The following rules apply to comments:
e Comments do not have to start at the beginning of a line. They can follow active
code on a line. For example, the following line is valid:
MyVariable = 12; // Set MyVariable to the default value.
¢ The end of a multiline comment can be followed on the same line by active code. For
example, the following line is valid, although it is poor coding practice:
End of my Tong comment */ foo = "bar";
¢ You can use multiline format for a comment on a single line, for example:
/*This is a single Tine comment using multiline format. */
e You cannot nest /* and */ markers inside other comment lines.

The CFScript language 119

Reserved words

In addition to the names of ColdFusion functions and words reserved by ColdFusion
expressions (such as NOT, AND, IS, and so on), the following words are reserved in
CFScript. Do not use these words as variables or identifiers in your scripting code:

break default function switch
case do if try
catch else in var
continue for return while

Differences from JavaScript

Although CFScript and JavaScript are similar, they have several key differences. The

following list identifies CFScript features that differ from JavaScript:

o CFScript uses ColdFusion expressions, which are neither a subset nor a superset of
JavaScript expressions. For example, there is no < operator in CFScript; you use the
LT operator instead.

e Variable declarations are only used in user-defined functions.

o CFScript is case-insensitive.

o All statements end with a semicolon and line breaks in the code are ignored.

e Assignments are statements, not expressions.

e JavaScript objects, such as Window and Document, are not available.

¢ Only the ColdFusion Server processes CFScript. There is no client-side CFScript.

CFScript limitation

You cannot include ColdFusion tags in CFScript. However, you can include cfscript
blocks inside other ColdFusion tags, such as cfoutput.

CFScript functional equivalents to ColdFusion tags

Although you cannot use ColdFusion tags in CFSCript, CFSCript and ColdFusion
functions provide equivalents to several commonly-used CEML tags. The following table
lists ColdFusion tags with equivalent functions or CFScript statements:

Tag CFScript equivalent

cfset Direct assignment, such as Myvar=1;
cfoutput WriteQutput function

cfif, cfelseif, cfelse ifand elsestatements

cfswitch, cfcase, switch, case, and default statements
cfdefaultcase

Indexed cfloop forloops

Conditional cfloop whileloops and do whileloops

120 Chapter6 Extending ColdFusion Pages with CFML Scripting

Tag

CFScript equivalent

Structure cfloop

cfbreak

cftry, cfcatch

cfcookie

cfobject

for inloop.)There is no equivalent for queries, lists, or
objects.)

break statement. CFScript also has a continue statement that

has no equivalent CFML tag.

try and catch statements

Direct assignment of Cookie scope memory-only variables.

You cannot use direct assignment to set persistent cookies
that are stored on the user’s system.

CreateObject function

The CFScript language

121

Using CFScript statements

The following sections describe how to use these CFScript statements:
¢ Assignment statements and functions

¢ Conditional processing statements

¢ Looping statements

Using assignment statements and functions
CFScript assignment statements are the equivalent of the cfset tag. These statements
have the following form:
Ival = expression;
lval is any ColdFusion variable reference; for example:
x = "positive";
Y =x
a[3]=b;

structure.member=10;
ArrayCopy=myArray;

You can use ColdFusion function calls, including UDFs, directly in CFScript. For
example, the following line is a valid CFScript statement:

StructInsert(employee,"lastname",FORM. Tastname);

Using conditional processing statements

CFScript includes the following conditional processing statements:

e if and else statements, which serve the same purpose as the cfif, cfelseif, and
cfelse tags

e switch, case, and default statements, which are the equivalents of the cfswitch,
cfcase, and cfdefaultcase tags

Using if and else statements

The if and else statements have the following syntax:
if(expr) statement [else statement]
In its simplest form, an if statement looks like this:

if(value EQ 2700)
message = "You’ve reached the maximum";

A simple if-else statement looks like the following:

if(score GT 1)

result = "positive";
else

result = "negative";

CFScript does not include an elseif statement. However, you can use an if statement
immediately after an else statement to create the equivalent of a cfelseif tag, as the
following example shows:

if(score GT 1)
result = "positive";

122 Chapter6 Extending ColdFusion Pages with CFML Scripting

else if(score EQ 0)
result = "zero";
else
result = "negative";

As with all conditional processing statements, you can have multiple statements for each
condition, as follows:

if(score GT 1)

{

result = "positive";

message = "The result was positive.";
else

{

result = "negative";

message = "The result was negative.";

}

Note: Often, you can make your code clearer by using braces even where they are not
required.

Using switch and case statements

The switch statement and its dependent case and default statements have the following

syntax:

switch (expression) {
case constant: [case constant:]... statement(s) break;
[case constant: [case constant:]... statement(s) break;]...

[default: statement(s)] }

Use the following rules and recommendations for switch statements:

¢ You cannot mix Boolean and numeric constant values in a switch statement.

e Each constant value must be a constant (that is, not a variable, a function, or other
expression).

e Multiple case constant : statements can precede the statement or statements to
execute if any of the cases are true. This lets you specify several matches for one code
block.

e No two constant values can be the same.

o The statements following the colon in a case statement block do not have to be in
braces. If a constant value equals the switch expression, ColdFusion executes all
statements through the break statement.

e The break statement at the end of the case statement tells ColdFusion to exit the
switch statement. ColdFusion does not generate an error message if you omit a break
statement. However, if you omit it, ColdFusion executes all the statements in the
following case statement, even if that case is false. In nearly all circumstances, this is
not what you want to do.

¢ You can have only one default statement in a switch statement block. ColdFusion
executes the statements in the default block if none of the case statement constants
equals the expression value.

o The default statement does not have to follow all switch statements, but it is good
programming practice to do so. If any switch statements follow the default statement
you must end the default block code with a break statement.

Using CFScript statements 123

o The default statement is not required. However, you should use one if the case
constants do not include all possible values of the expression.

e The default statement does not have to follow all the case statements; however, it is
good programming practice to put it there.

The following switch statement takes the value of a name variable:

1 If the name is John or Robert, it sets both the male variable and the found variable to
True.

2 If the name is Mary, it sets the male variable to False and the found variable to True.

3 Otherwise, it sets the found variable to False.

switch(name)
{
case "John": case "Robert":
male=True;
found=True;
break;
case "Mary":
male=False;
found=True;
break;
default:
found=False;
} //end switch

Using looping statements

CFScript provides a richer selection of looping constructs than those supplied by CFML
tags. It enables you to create efficient looping constructs similar to those in most

programming and scripting languages. CFScript provides the following looping
constructs:

o For

e While

e Do-while
e For-in

CFScript also includes the continue and break statements that control loop processing.

The following sections describe these types of loops and their uses.

Using for loops

The for loop has the following format:

for (inital-expression; test-expression; final-expression) statement
The initial-expression and final-expression can be one of the following:

¢ A single assignment expression; for example, x=5 or loop=loop+1

¢ Any ColdFusion expression; for example, SetVariable("a",a+1)
e Empty

124

Chapter 6 Extending ColdFusion Pages with CFML Scripting

The test-expression can be one of the following:
¢ Any ColdFusion expression; for example:
ALT 5

index LE x
status EQ "not found" AND index LT end

* Empty

Note: The test expression is re-evaluated before each repeat of the loop. If code inside the
loop changes any part of the test expression, it can affect the number of iterations in the
loop.

The statement can be a single semicolon terminated statement or a statement block in
curly braces.

When ColdFusion executes a for loop, it does the following:
1 Evaluates the initial expression.
2 Evaluates the test-expression.

3 If the rest-expression is False, exits the loop and processing continues following the
statement.

If the rest-expression is True:
a Executes the statement (or statement block).

b Evaluates the final-expression.
¢ Returns to step 2.

For loops are most commonly used for processing in which an index variable is
incremented each time through the loop, but it is not limited to this use.

The following simple for loop sets each element in a 10-element array with its index
number.

for(index=1;
index LT 10;
index = index + 1)
alindexJ=index;

The following, more complex, example demonstrates two features:
o The use of curly braces to group multiple statements into a single block.
¢ An empty condition statement. All loop control logic is in the statement block.

{cfscript>
strings=ArrayNew(1);
ArraySet(strings, 1, 10, "lock");
strings[5]="key";
indx=0;
for(5 5)
{
indx=indx+1;
if(Find("key",strings[indx]1,1)) {
WriteQutput("Found key at " & indx & ".
");
break;
}
else if (indx IS ArraylLen(strings))

Using CFScript statements 125

{

WriteOutput("Exited at " & indx & ".
");

break;

}
}
<{/cfscript>
This example shows one important issue that you must remember when creating loops:
you must always ensure that the loop ends. If this example lacked the else if statement,
and there was no “key” in the array, ColdFusion would loop forever or until a system
error occurred; you would have to stop the server to end the loop.

The example also shows two issues with index arithmetic: in this form of loop you must
make sure to initialize the index, and you must keep track of where the index is
incremented. In this case, because the index is incremented at the top of the loop, you
must initialize it to 0 so it becomes 1 in the first loop.

Using while loops

The while loop has the following format:
while (expression) statement

The while statement does the following:
1 Evaluates the expression.

2 If the expression is True, it does the following:
a Executes the statement, which can be a single semicolon-terminated statement or
a statement block in curly braces.
b Returns to step 1.

If the expression is False, processing continues with the next statement.
The following example uses a while loop to populate a 10-element array with multiples
of five.
a = ArrayNew(1);
loop = 1;
while (loop LE 10)
{

alloop] = loop * 5;
loop = loop + 1;
}

As with other loops, you must make sure that at some point the while expression is False
and you must be careful to check your index arithmetic.

Using do-while loops

The do-while loop is like a while loop, except that it tests the loop condition after
executing the loop statement block. The do-while loop has the following format:

do statement while (expression);
The do while statement does the following:

1 Executes the starement, which can be a single semicolon-terminated statement or a
statement block in curly braces.

126

Chapter 6 Extending ColdFusion Pages with CFML Scripting

2 Evaluates the expression.

3 If the expression is true, it returns to step 1.
If the expression is False, processing continues with the next statement.

The following example, like the while loop example, populates a 10-element array with
multiples of 5:
a = ArrayNew(1);
loop = 1;
do
{

alToop] = loop * 5;

Toop = Toop + 1;
}
while (Toop LE 10);
Because the loop index increment follows the array value assignment, the example
initializes the loop variable to 1 and tests to make sure that it is less than or equal to 10.

The following example generates the same results as the previous two examples, but it
increments the index before assigning the array value. As a result, it initializes the index to
0, and the end condition tests that the index is less than 10.

a = ArrayNew(1);

loop = 0;

do {loop = Toop + 1; alloop] = Toop * 5;} while (Toop LT 10);

using for-in loops

The for-in loop loops over the elements in a ColdFusion structure. It has the following
format:

for (variable in structure) statement

The variable can be any ColdFusion identifier; it holds each structure key name as
ColdFusion loops through the structure. The structure must be the name of an existing
ColdFusion structure. The statement can be a single semicolon terminated statement or a
statement block in curly braces.

The following example creates a structure with three elements. It then loops through the
structure and displays the name and value of each key. Although the curly braces are not
required here, they make it easier to determine the contents of the relatively long
WriteOutput function. In general, you can make structured control flow, especially loops,
clearer by using curly braces.

myStruct=StructNew();
myStruct.productName="kumquat";
mystruct.quality="fine";
myStruct.quantity=25;
for (keyName in myStruct)
{
WriteQutput("myStruct." & Keyname & " has the value: " &
myStruct[keyName] &"
");
}

Note: Unlike the cfloop tag, you cannot use the CFSCript for-in loops to loop over a query,
list, or object.

Using CFScript statements 127

Using continue and break statements

The continue and break statements enable you to control the processing inside loops:

e The continue statement tells ColdFusion to skip to the beginning of the next loop
iteration.

o The break statement exits the current loop or case statement.

Using continue

The continue statement ends the current loop iteration, skips any code following it in the
loop, and jumps to the beginning of the next loop iteration. For example, the following
code loops through an array and display’s each value that is not an empty string:
for (Toop=l; loop LE 10; Toop = Toop+l)
{

if(alloop] EQ "") continue;

WriteOutput(Toop);
}
(To test this code snippet, you must first create an array, a, with 10 or more elements,
some of which are not empty strings.)

In general, the continue statement is particularly useful if you loop over arrays or
structures and you want to skip processing for array elements or structure members with
specific values, such as the empty string.

Using break

The break statement exits the current loop or case statement. Processing continues at the
next CFScript statement. You end case statement processing blocks with a break
statement. You can also use a test case with a break statement to prevent infinite loops, as
shown in the following example. This script loops through an array and prints out the
array indexes that contain the value key. It uses a conditional test and a break statement
to make sure that the loop ends when at the end of the array.

strings=ArrayNew(1);
ArraySet(strings, 1, 10, "Tock");
strings[5]="key";
strings[9]="key";
indx=0;
for(5 5)
{
indx=indx+1;
if(Find("key",strings[indx],1))
{
WriteOutput("Found a key at " & indx & ".
");
}
else if (indx IS Arraylen(strings))
{
WriteOutput("Array ends at index " & indx & ".
");
break;

128 Chapter6 Extending ColdFusion Pages with CFML Scripting

Handling exceptions

ColdFusion provides two statements for exception handling in CFScript: try and catch.
These statements are equivalent to the CFML cftry and cfcatch tags.

Note: This section does not explain exception handling concepts. For a discussion of
exception handling in ColdFusion, see Chapter 14, “Handling Errors” on page 281.

Exception handling syntax and rules

Exception-handling code in CFScript has the following format:

try

{
Code where exceptions will be caught

}

catch(exceptionType exceptionVariable)

{
Code to handle exceptions of type exceptionType
that occur in the try block

}

catch(exceptionTypeN exceptionVariableN)
{
Code to handle exceptions of type
exceptionTypeN that occur in the try block
}

Note: In CFScript, catch statements follow the try block; you do not put them inside the
try block. This structure differs from that of the cftry tag, which must include the cfcatch
tags in its body.

When you have a try statement, you must have a catch statement. In the catch block, the
exceptionVariable variable contains the exception type. This variable is the equivalent of
the cfcatch tag cfcatch. Type built-in variable.

Exception handling example

The following code shows exception handling in CFScript. It uses a CreateObject
function to create a Java object. The catch statement executes only if the CreateObject
function generates an exception. The displayed information includes the exception
message; the except.Message variable is the equivalent of calling the Java getMessage
method on the returned Java exception object.

Lcfscript>
try
{
emp = CreateObject("Java", "Employees");
}
catch(Any excpt)
{
WriteOutput("The application was unable to perform a required operation.

Please try again Tlater.
If this problem persists, contact
Customer Service and include the following information:

ffexcpt .Messagefi
");
}
</cfscript>

Handling exceptions 129

CFScript example

The example in this section uses the following CFScript features:
e Variable assignment

e Function calls

¢ For loops

o If-else statements

¢ WriteOutput functions

e Switch statements

The example uses CFScript without any other ColdFusion tags. It creates a structure of
course applicants. This structure contains two arrays; the first has accepted students, the
second has rejected students. The script also creates a structure with rejection reasons for
some (but not all) rejected students. It then displays the accepted applicants followed by
the rejected students and their rejection reasons.

<html>
<head>
<title>CFScript Example</title>
</head>
<body>
{cfscript>

//Set the variables

acceptedApplicants[1] = "Cora Cardozo";
acceptedApplicants[2] = "Betty Bethone";
acceptedApplicants[3] = "Albert Albertson";
rejectedApplicants[1] = "Erma Erp";
rejectedApplicants[2] = "David Dalhousie";
rejectedApplicants[3] = "Franny Farkle";
applicants.accepted=acceptedApplicants;
applicants.rejected=rejectedApplicants;

rejectCode=StructNew();
rejectCode["David Dalhousie"] = "score";
rejectCode["Franny Farkle"] = "too late";

//Sort and display accepted applicants

ArraySort(applicants.accepted, "text","asc");
WriteOutput("The following applicants were accepted:<hr>");
for (j=1;J Tte Arraylen(applicants.accepted);j=j+1)
{

WriteOutput(applicants.accepted[j] & "
");
}
WriteOutput("
");

//sort and display rejected applicants with reaons information
ArraySort(applicants.rejected, "text","asc");

WriteOutput("The following applicants were rejected:<hr>");
for (j=1;j 1te Arraylen(applicants.rejected);j=j+1)

130 Chapter6 Extending ColdFusion Pages with CFML Scripting

applicant=applicants.rejected[jJ;
WriteOutput(applicant & "
");
if (StructKeyExists(rejectCode,applicant))

{

switch(rejectCodelapplicant])

{

case "score":

WriteOutput("Reject reason: Score was too Tow.
");

break;
case "late":

WriteOutput("Reject reason: Application was late.
");

break;
default:

WriteOutput("Rejected with invalid reason code.
");

} //end switch
} //end if
else
{

WriteOutput("Reject reason was not defined.
");

} //end else
WriteOutput("
");
} //end for
</cfscript>

Reviewing the code

The following table describes the code:

Code

Description

<cfscript>

acceptedApplicants[1] = "Cora Cardozo";
acceptedApplicants[2] = "Betty Bethone";
acceptedApplicants[3] = "Albert Albertson";
rejectedApplicants[1] = "Erma Erp";
rejectedApplicants[2] = "David DaThousie";
rejectedApplicants[3] = "Franny Farkle";
applicants.accepted=acceptedApplicants;
applicants.rejected=rejectedApplicants;

rejectCode=StructNew();

rejectCode["David Dalhousie"] = "score";
rejectCode["Franny Farkle"] = "too late";

ArraySort(applicants.accepted, "text","asc");

WriteOutput("The following applicants were accepted:<hr>");

for (j=1;j 1te Arraylen(applicants.accepted);j=j+1)
{
WriteOutput(applicants.accepted[j] & "
");
}
WriteOutput("
");

Creates two one-dimensional arrays, one with the
accepted applicants and another with the rejected
applicants. The entries in each array are in random
order.

Creates a structure and assign each array to an
element of the structure.

Creates a structure with rejection codes for
rejected applicants. The rejectedCode structure
does not have entries for all rejected applicants,
and one of its values does not match a valid code.
The structure element references use associative
array notation in order to use key names that
contain spaces.

Sorts the accepted applicants alphabetically.
Displays a heading.

Loops through the accepted applicants and writes
their names. Braces enhance clarity, although they
are not needed for a single statement loop.

Writes an additional line break at the end of the list
of accepted applicants.

CFScript example 131

Code

Description

ArraySort(applicants.rejected, "text","asc");
WriteOutput("The following applicants were rejected:<hr>");

for (j=1;j 1te Arraylen(applicants.rejected);j=j+1)
{
applicant=applicants.rejected[j];
WriteOutput(applicant & "
");

if (StructKeyExists(rejectCode,applicant))
{
switch(rejectcodelapplicant])
{
case "score":
WriteOutput("Reject reason: Score was too Tow.
");
break;
case "late":
WriteOutput("Reject reason: Application was
Tate.
");
break;
default:
WriteOutput("Rejected with invalid reason code.
");
} //end switch
} //end if

else
{

WriteOutput("Reject reason was not defined.
");
{

WriteOutput("
");

Sorts rejectedApplicants array alphabetically and
writes a heading.

Loops through the rejected applicants.

Sets the applicant variable to the applicant name.
This makes the code clearer and enables you to
easily reference the rejectCode array later in the
block.

Writes the applicant name.

Checks the rejectCode structure for a rejection
code for the applicant.

If a code exists, enters a switch statement that
examines the rejection code value.

If the rejection code value matches one of the
known codes, displays an expanded explanation of
the meaning. Otherwise (the default case), displays
an indication that the rejection code is not valid.

Comments at the end of blocks help clarify the
control flow.

If there is no entry for the applicant in the
rejectCodestructure, displays a message indicating
that the reason was not defined.

Displays a blank line after each rejected applicant.

£
i/éizgi pi); Endg the for loop that handles each rejected
applicant.
Ends the CFScript.
132 Chapter6 Extending ColdFusion Pages with CFML Scripting

CHAPTER 7
Using Regular Expressions in

Functions

Regular expressions let you perform string matching operations using ColdFusion
functions. This chapter describes how regular expressions work with the following
functions:

e REFind

e REFindNoCase

e REReplace

e REReplaceNoCase

This chapter does nor apply to regular expressions used in the cfinput and cftextinput
tags. These tags use JavaScript regular expressions, which have a slightly different syntax
than ColdFusion regular expressions. For information on JavaScript regular expressions,
see Chapter 27, “Building Dynamic Forms” on page 607.

Contents

o About regular eXpressionsocccioiiiiiciiiiiiiiici s 134
o Regular eXpression SYMIAX ..c.coueereireeirreinieinieinieeeeee et esenesesese s snenes 136
o Using backreferences........oooucueuiiiiiiiiciiiiiicicicicccce s 144
¢ Returning matched subexpressionsccoceviciciiiiiiiniiiicc 147
o Regular expression eXamplescoovveeieiirieienieenieiieineeeeee s 152
o Types of regular expression technologiescoccevviicioiiiniiciiniccicinceae, 154

133

About regular expressions

In traditional string matching, as used by the ColdFusion Find and Replace functions,
you provide the string pattern to search for and the string to search. The following
example searches a string for the pattern " BIG " and returns a string index if found. The
string index is the location in the search string where the string pattern begins.

<cfset IndexOfOccurrence=Find(" BIG ", "Some BIG string")>

{l--- The value of IndexOfOccurrence is 5 --->

You must provide the exact string pattern to match. If the exact pattern is not found, Find
returns an index of 0. Because you must specify the exact string pattern to match,
matches for dynamic data can be very difficult, if not impossible, to construct.

The next example uses a regular expression to perform the same search. This example
searches for the first occurrence in the search string of any string pattern that consists
entirely of uppercase letters enclosed by spaces:

<cfset IndexOfOccurrence=REFind(" [A-Z]+ ", "Some BIG string")>

{l--- The value of IndexOfOccurrence is 5 --->

The regular expression " [A-Z]+ " matches any string pattern consisting of a leading
space, followed by any number of uppercase letters, followed by a trailing space.
Therefore, this regular expression matches the string " BIG " and any string of uppercase
letters enclosed in spaces.

By default, the matching of regular expressions is case sensitive. You can use the
case-insensitive functions, REFindNoCase and REReplaceNoCase, for case-insensitive
matching.

Because you often process large amounts of dynamic textual data, regular expressions are
invaluable in writing complex ColdFusion applications.

Using ColdFusion regular expression functions

ColdFusion supplies four functions that work with regular expressions:
e REFind

REFindNoCase

REReplace

REReplaceNoCase

REFind and REFindNoCase use a regular expression to search a string for a pattern and
return the string index where it finds the pattern. For example, the following function
returns the index of the first instance of the string " BIG "

<{cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG BIG string")>

<!--- The value of IndexOfOccurrence is 5 --->

To find the next occurrence of the string " BIG ", you must call the REFind function a
second time. For an example of iterating over a search string to find all occurrences of the
regular expression, see “Returning matched subexpressions” on page 147.

REReplace and REReplaceNoCase use regular expressions to search through a string and

replace the string pattern that matches the regular expression with another string. You
can use these functions to replace the first match, or to replace all matches.

134

Chapter 7 Using Regular Expressions in Functions

For detailed descriptions of the ColdFusion functions that use regular expressions, see
CFML Reference.

Basic regular expression syntax

The simplest regular expression contains only a literal characters. The literal characters
must match exactly the text being searched. For example, you can use the regular
expression function REFind to find the string pattern " BIG ", just as you can with the
Find function:

<{cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG string")>
<{!--- The value of IndexOfOccurrence is 5 --->

In this example, REFind must match the exact string pattern " BIG ".

To use the full power of regular expressions, combine literal characters with character sets
and special characters, as in the following example:

<{cfset IndexOfOccurrence=REFind(" [A-Z]+ ", "Some BIG string")>

<!--- The value of IndexOfOccurrence is 5 --->

The literal characters of the regular expression consists of the space characters at the
beginning and end of the regular expression. The character set consists of that part of the
regular expression in square brackets. This character set specifies to find a single
uppercase letter from A to Z, inclusive. The plus sign (+) after the square brackets is a
special character specifying to find one or more occurrences of the character set.

If you removed the + from the regular expression in the previous example, " [A-Z] "
matches a literal space, followed by any single uppercase letter, followed by a single space.
This regular expression matches " B " but not " BIG ". The REFind function returns 0 for
the regular expression, meaning that it did not find a match.

You can construct very complicated regular expressions containing literal characters,
character sets, and special characters. Like any programming language, the more you
work with regular expressions, the more you can accomplish with them. The examples in
this section are fairly basic. For more examples, see “Regular expression examples” on

page 152.

About regular expressions 135

Regular expression syntax

This section describes the basic rules for creating regular expressions.

Using character sets

The pattern within the square brackets of a regular expression defines a character set that
is used to match a single character. For example, the regular expression " [A-Za-z] "
specifies to match any single uppercase or lowercase letter enclosed by spaces. In the
character set, a hyphen indicates a range of characters.

The regular expression " B[IAU]G " matches the strings “ BIG “, “ BAG “, and “ BUG ¢,
but does not match the string " BOG ".

If you specified the regular expression as " B[IA][GN] ", the concatenation of character
sets creates a regular expression that matches the corresponding concatenation of
characters in the search string. This regular expression matches a space, followed by “B”,
followed by an “I” or “A”, followed by a “G” or “N”, followed by a trailing space. The
regular expression matches “ BIG 7, “ BAG 7, “BIN 7, and “BAN ”.

The regular expression [A-Z][a-z]* matches any word that starts with an uppercase letter
and is followed by zero or more lowercase letters. The special character * after the closing
square bracket specifies to match zero or more occurrences of the character set.

Note: The * only applies to the character set that immediately precedes it, not to the entire
regular expression.

A + after the closing square bracket specifies to find one or more occurrences of the

character set. You interpret the regular expression " [A-Z]+ " as matching one or more

uppercase letters enclosed by spaces. Therefore, this regular expression matches " BIG "
and also matches “ LARGE 7, “ HUGE ”, “ ENORMOUS ”, and any other string of

uppercase letters surrounded by spaces.

Considerations when using special characters

Since a regular expression followed by an * can match zero instances of the regular
expression, it can also match the empty string. For example,
<cfoutput>RERepTlace("Hello","[TI*","7","ALL") -

#iRERepTlace("Hello","[TI*","7","ALL"){KKBR>
</cfoutput>

results in the following output:

REReplace("Hello","[T]*","7","ALL") - 7H7e717170

The regular expression [T]* can match empty strings. It first matches the empty string
before “H” in “Hello”. The “ALL” argument tells REReplace to replace all instances of an

expression. The empty string before “e” is matched and so on until the empty string
before “0” is matched.

This result might be unexpected. The workarounds for these types of problems are
specific to each case. In some cases you can use [T]+, which requires at least one “T7,
instead of [T]*. Alternatively, you can specify an additional pattern after [T]*.

136

Chapter 7 Using Regular Expressions in Functions

In the following examples the regular expression has a “W” at the end:

<cfoutput>REReplace("Hello World","[TI*W","7","ALL") -
f#fREReplace("Hello World","[TI*W","7","ALL")#
</cfoutput>

This expression results in the following more predictable output:

REReplace("Hello World","[TI*W","7","ALL") - Hello 7orld

You must be aware of two other consideration when using special characters:

¢ Ifyou want to include a hyphen, -, in the square brackets of a character set as a literal
character, you cannot escape it as you can other special characters because
ColdFusion always interprets a hyphen as a range indicator. Therefore, if you use a
literal hyphen in a character set, make it the last character in the set.

¢ If you want to include] (closing square bracket) in the square brackets of a character
set it must be the first character. Otherwise, it does not work even if you use \]. The
following example shows this:

<!--- Want to replace closing square bracket and all a's with * --->
<{cfset strSearch = "[Test message]">
<l--- Next Tine does not work since] is not the FIRST character

within [1 --->
<cfset re = "[a\]]">
<cfoutput>REReplace(sstrSearchit,fref, "*" ,"ALL") -
#iRERepTlace(strSearch,re,"*" , "ALL"){<Kbr>
Neither "]' nor 'a' was replaced because we searched for 'a'
followed by 'J1'

</cfoutput>
<I--- Next Tine works since] is the FIRST character within [] --->
<cfset re = "[Jal">
<cfoutput>REReplace(ffstrSearchit,ffreff, "*" , "ALL") -
#iRERepTlace(strSearch,re,"*", "ALL")#

Both "a' and ']' were Replaced with *
</cfoutput>

Finding repeating characters

In some cases, you might want to find a repeating pattern of characters in a search string.
For example, the regular expression "a{2,4}" specifies to match two to four occurrences of
“a”. Therefore, it would match: "aa", "aaa", "aaaa", but not "a" or "aaaaa". In the
following example, the REFind function returns an index of 6:

<cfset IndexOfOccurrence=REFind("a{2,4}", "hahahaaahaaaahaaaaahhh")>

<l--- The value of IndexOfOccurrence is 6--->

The regular expression "[0-9]{3,}" specifies to match any integer number containing
three or more digits: “123”, “45678”, etc. However, this regular expression does not
match a one-digit or two-digit number.

You use the following syntax to find repeating characters:

o (m,n}
Where is 0 or greater and 7 is greater than or equal to 7. Match m through »
(inclusive) occurrences.

The expression {0,1} is equivalent to the special character ?.

Regular expression syntax 137

o {m,}
Where is 0 or greater. Match at least 7 occurrences. The syntax {,7} is not
allowed.

The expression {1,} is equivalent to the special character +, and {0,} is equivalent to *.

o {m}

Where is 0 or greater. Match exactly 7 occurrences.

Case sensitivity in regular expressions

ColdFusion supplies case-sensitive and case-insensitive functions for working with
regular expressions. REFind and REReplace perform case-sensitive matching and
REFindNoCase and REReplaceNoCase perform case-insensitive matching.

You can build a regular expression that models case-insensitive behavior, even when used
with a case-sensitive function. To make a regular expression case insensitive, substitute
individual characters with character sets. For example, the regular expression
[Jjl[Aa][Vv][Aa], when used with the case-sensitive functions REFind or REReplace,
matches all of the following string patterns:

e JAVA

® java

o Java

* jAva

e All other combinations of case

Using subexpressions

Parentheses group parts of regular expressions together into grouped subexpressions that
you can treat as a single unit. For example, the regular expression "ha" specifies to match
a single occurrence of the string. The regular expression "(ha)+" matches one or more
instances of “ha”.

In the following example, you use the regular expression "B(ha)+" to match the letter "B"
followed by one or more occurrences of the string "ha'":

<cfset IndexOfOccurrence=REFind("B(ha)+", "hahaBhahahaha")>
<!--- The value of IndexOfOccurrence is 5 --->

You can use the special character | in a subexpression to create a logical "OR". You can
use the following regular expression to search for the word "jelly" or "jellies":

<cfset IndexOfOccurrence=REFind("jell(y|ies)", "I Tike peanut butter and jelly">
<l--- The value of IndexOfOccurrence is 26--->

Using special characters

Regular expressions define the following list of special characters:
SR LA ()]

In some cases, you use a special character as a literal character. For example, if you want
to search for the plus sign in a string, you have to escape the plus sign by preceding it

with a backslash:

"

138

Chapter 7 Using Regular Expressions in Functions

The following table describes the special characters for regular expressions:

Special

Character Description

\

0

A backslash followed by any special character matches the literal character
itself, that is, the backslash escapes the special character.

For example, "\+" matches the plus sign, and "\\" matches a backslash.

A period matches any character, including newline.

To match any character except a newline, use [“#chr(13)##chr(10)#], which
excludes the ASCII carriage return and line feed codes. The corresponding
escape codes are \rand \n.

A one-character character set that matches any of the characters in that set.

For example, "[akm]" matches an “a”, “k”, or “m”. A hyphen in a character set
indicates a range of characters; for example, [a-z] matches any single
lowercase letter.

If the first character of a character set is the caret ("), the regular expression
matches any character except those in the set. It does not match the empty
string.

For example, [*akm] matches any character except “a”, “k”, or “m”. The caret
loses its special meaning if it is not the first character of the set.

If the caret is at the beginning of a regular expression, the matched string must
be at the beginning of the string being searched.

For example, the regular expression ""ColdFusion" matches the string
"ColdFusion lets you use regular expressions"” but not the string "In
ColdFusion, you can use regular expressions."

If the dollar sign is at the end of a regular expression, the matched string must
be at the end of the string being searched.

For example, the regular expression "ColdFusion$" matches the string "l like
ColdFusion" but not the string "ColdFusion is fun."

A character set or subexpression followed by a question mark matches zero or
one occurrences of the character set or subexpression.

For example, xy?z matches either “xyz” or “xz”.

The OR character allows a choice between two regular expressions.

For example, jell(ylies) matches either “jelly” or “jellies”.

A character set or subexpression followed by a plus sign matches one or more
occurrences of the character set or subexpression.

For example, [a-z]+ matches one or more lowercase characters.

A character set or subexpression followed by an asterisk matches zero or more
occurrences of the character set or subexpression.

For example, [a-z]* matches zero or more lowercase characters.

Parentheses group parts of a regular expression into subexpressions that you
can treat as a single unit.

For example, (ha)+ matches one or more instances of “ha”.

Regular expression syntax 139

Special
Character Description

(?x) If at the beginning of a regular expression, it specifies to ignore whitespace in
the regular expression and lets you use #4# for end-of-line comments. You can
match a space by escaping it with a backslash.

For example, the following regular expression includes comments, preceded
by ##, that are ignored by ColdFusion:

reFind("(?x)

one JHHirst option

[two Htsecond option
three\ point\ five iHf note escaped spaces
, "three point five")

(?m) If at the beginning of a regular expression, it specifies the multiline mode for the
special characters " and $.

When used with ", the matched string can be at the start of the of entire search
string or at the start of new lines, denoted by a linefeed character or chr(10),
within the search string. For $, the matched string can be at the end the search
string or at the end of new lines.

Multiline mode does not recognize a carriage return, or chr(13), as a new line
character.

The following example searches for the string “two” across multiple lines:

fireFind (" (?m)~two", "oneffchr(10)#two")#
This example returns 4 to indicate that it matched “two” after the chr(10)
linefeed. Without (?m), the regular expression would not match anything,
because " only matches the start of the string.

The character (?m) does not affect \A or \Z, which always match the start or
end of the string, respectively. For information on \A and \Z, see “Using escape
sequences” on page 141.

(?i) If at the beginning of a regular expression for REFind(), it specifies to perform a
case-insensitive compare.
For example, the following line would return an index of 1:
frreFind("(?2i)hi", "HI"™)#
If you omit the (i), the line would return an index of zero to signify that it did not
find the regular expression.

140 Chapter7 Using Regular Expressions in Functions

Special
Character Description

(?=..) If at the beginning of a regular expression, it specifies to use positive lookahead
when searching for the regular expression.

Positive lookahead tests for the parenthesized subexpression like regular
parenthesis, but does not include the contents in the match - it merely tests to
see if it is there in proximity to the rest of the expression.

For example, consider the expression to extract the protocol from a URL:

<{cfset regex = "http(?=://)">

<{cfset string = "http://">

<{cfset result = refFind(regex, string, 1, "yes")>

mid(string, result.pos[1], result.len[1])
This example results in the string "http". The lookahead parentheses ensure
that the "://" is there, but does not include it in the result. If you did not use
lookahead, the result would include the extraneous "://".

Lookahead parentheses do not capture text, so backreference numbering will
skip over these groups. For more information on backreferencing, see “Using
backreferences” on page 144.

(?..) If at the beginning of a regular expression, it specifies to use negative
lookahead. Negative is just like positive lookahead, as specified by (?=...),
except that it tests for the absence of a match.

Lookahead parentheses do not capture text, so backreference numbering will
skip over these groups. For more information on backreferencing, see “Using
backreferences” on page 144.

(?:..) If you prefix a subexpression with "?:", ColdFusion performs all operations on
the subexpression except that it will not capture the corresponding text for use
with a back reference.

Using escape sequences

Escape sequences are special characters in regular expressions preceded by a backslash (1).
You typically use escape sequences to represent special characters within a regular
expression. For example, the escape sequence \t represents a tab character within the
regular expression, and the \d escape sequence specifies any digit, similar to [0-9]. In
ColdFusion the escape sequences are case-sensitive.

Regular expression syntax 141

The following table lists the escape sequences supported in ColdFusion:

Escape

Sequence Description

\b

\B

\A

\Z

\n
\r
\t
\f
\d
\D
\w
\W
\s

\S
\xdd
\ddd

Specifies a boundary defined by a transition from an alphanumeric character to
a nonalphanumeric character, or from a nonalphanumeric character to an
alphanumeric character.

For example, the string " Big" contains boundary defined by the space
(nonalphanumeric character) and the "B" (alphanumeric character).

The following example uses the \b escape sequence in a regular expression to
locate the string "Big" at the end of the search string and not the fragment
"big" inside the word "ambiguous”.

reFindNoCase("\bBig\b", "Don’t be ambiguous about Big.")
<!--- The value of IndexOfOccurrence is 26 --->
When used inside of a character set (e.g. [\b]), it specifies a backspace

Specifies a boundary defined by no transition of character type. For example,
two alphanumeric character in a row or two nonalphanumeric character in a
row; opposite of \b.

Specifies a beginning of string anchor, much like the " special character.

However, unlike *, you cannot combine \A with (?m) to specify the start of
newlines in the search string.

Specifies an end of string anchor, much like the $ special character.

However, unlike $, you cannot combine \Z with (?m) to specify the end of
newlines in the search string.

Newline character

Carriage return

Tab

Form feed

Any digit, similar to [0-9]

Any nondigit character, similar to [*0-9]

Any alphanumeric character, similar to [[:alnum:]]

Any nonalphanumeric character, similar to [*[:alnum:]]

Any whitespace character including tab, space, newline, carriage return, and
form feed. Similar to [\t\n\n\f].

Any nonwhitespace character, similar to [* \t\n\r\f]
A hexadecimal representation of character, where d is a hexadecimal digit

An octal representation of a character, where d is an octal digit, in the form
\OOO to \377

142

Chapter 7 Using Regular Expressions in Functions

Using character classes
In character sets within regular expressions, you can include a character class. You enclose
the character class inside square brackets, as the following example shows:
REReplace (“Macromedia Web Site”,”[[:space:]1]1”,”*”,”ALL")
This code replaces all the spaces with *, producing this string:
Macromedia*Web*Site
You can combine character classes with other expressions within a character set. For

example, the regular expression [[:space:]123] searches for a space, 1, 2, or 3. The
following example also uses a character class in a regular expression:

<cfset IndexOfOccurrence=REFind("[[:space:]1[A-Z]+[[:space:1]1",
"Some BIG string")>
<l--- The value of IndexOfOccurrence is 5 --->

The following table shows the character classes that ColdFusion supports:

Character class Matches

-alpha: Matches any letter. Same as [A-Za-z].

:upper: Matches any uppercase letter, including accented uppercase
characters.

lower: Matches any lowercase letter, including accented lowercase
characters.

digit: Matches any digit. Same as [0-9] and \d.

alnum: Matches any alphanumeric character. Same as [A-Za-z0-9] or \w.

xdigit: Matches any hexadecimal digit. Same as [O-9A-Fa-f].

:blank: Matches space or a tab.

space: Matches space, tab, new line, line feed, or carriage return. Same as \s.

‘print: Matches any printable character.

punct: Matches any punctuation character, that is, one of I '#S % & * () * +, -
= ?@0/17 {1}

:graph: Matches any of the characters defined as a printable character except

those defined as part of the space character class.

cntrl: Matches any character not part of the character classes [:upper:],
[[lower:], [:alpha:], [:digit:], [:punct:], [:graph:], [:print:], or [:xdigit:].

Regular expression syntax 143

Using backreferences

You use parenthesis to group components of a regular expression into subexpressions. For
example, the regular expression "(ha)+" matches one or more occurrences of the string
"ha".

ColdFusion performs an additional operation when using subexpressions; it
automatically saves the characters in the search string matched by a subexpression for
later use within the regular expression. Referencing the saved subexpression text is called
backreferencing.

You can use backreferencing when searching for repeated words in a string, such as “the
the” or “is is”. The following example uses backreferencing to find all repeated words in
the search string and replace them with an asterisk:

REReplace("There is is coffee in the the kitchen",
[T4([A-Za-2z]+)[J+\1"." * " "ALL")

Using this regular expression, ColdFusion detects the two occurrences of "is" as well as

the two occurrences of "the", replaces them with an asterisk enclosed in spaces, and
returns the following string:

There * coffee in * kitchen
You interpret the regular expression []+([A-Za-z]+)[]+\1 as follows:

Use the subexpression ([A-Za-z]+) to search for character strings consisting of one or
more letters, enclosed by by one or more spaces, []+, followed by the same character
string that matched the first subexpression, \1.

You reference the matched characters of a subexpression using a slash followed by a digit
n (\n) where the first subexpression in a regular expression is referenced as \1, the second
as \2, etc. The next section includes an example using multiple backreferences.

Using backreferences in replacement strings

You can use backreferences in the replacement string of both the REReplace and
REReplaceNoCase functions. For example, to replace the first repeated word in a text string
with a single word, use the following syntax:

REReplace("There is is a cat in in the kitchen",
"([A-Za-z]H)[I+\1","\1")

This results in the sentence:
“There is a cat in in the kitchen”

You can use the optional fourth parameter to REReplace, scope, to replace all repeated
words, as in the following code:

REReplace("There is is a cat in in the kitchen",
"([A-Za-z]+)[J+\1","\1","ALL")

This results in the following string:

“There is a cat in the kitchen”

144 Chapter 7 Using Regular Expressions in Functions

The next example uses two backreferences to reverse the order of the words "apples” and
"pairs” in a sentence:
<cfset astring = "apples and pears, apples and pears, apples and pears">
<{cfset newString = REReplace("ffastring#", "(apples) and (pears)",

"\2 and \1","ALL")>
In this example, you reference the subexpression (apples) as \1 and the subexpression
(pears) as \2. The REReplace function returns the string:

"pears and apples, pears and apples, pears and apples”

Note: To use backreferences in either the search string or the replace string, you must use
parentheses within the regular expression to create the corresponding subexpression.
Otherwise, ColdFusion throws an exception.

Using backreferences to perform case conversions in replacement strings

The REReplace and REReplaceNoCase functions support special characters in replacement
strings to convert replacement characters to uppercase or lowercase. The following table
describes these special characters:

Special

character Description

\u Converts the next character to uppercase.

\l Converts the next character to lowercase.

\U Converts all characters to uppercase until encountering \E.
\L Converts all characters to lowercase until encountering \E.
\E End\Uor\L.

To include a literal \u, or other code, in a replacement string, escape it with another
backslash; for example \\u .

For example, the following statement replaces the uppercase string "HELLO" with a
lowercase "hello". This example uses backreferences to perform the replacement. For
more information on using backreferences, see “Using backreferences in replacement
strings” on page 144.

reReplace("HELLO", "([[:upper:]]*)", "Don't shout\scream \L\1")

The result of this example is the string "Don't shout\scream hello".

Escaping special characters in replacement strings

You use the backslash character, \, to escape backreference and case-conversion characters
in replacement strings. For example, to include a literal "\u" in a replacement string,
escape it, as in "\\u".

Using backreferences 145

Omitting subexpressions from backreferences

By default, a set of parentheses will both group the subexpression and capture its matched
text for later referral by backreferences. However, if you insert "?:" as the first characters
of the subexpression, ColdFusion performs all operations on the subexpression except
that it will not capture the corresponding text for use with a back reference.

This is useful when alternating over subexpressions containing differing numbers of
groups would complicate backreference numbering. For example, consider an expression
to insert a "Mr." in between Bonjour|Hi|Hello and Bond, using a nested group for
alternating between Hi & Hello:

<cfset regex = "(Bonjour|H(?:i|ell0))(Bond)">

<cfset replaceString = "\1 Mr.\2">

<{cfset string = "Hello Bond">

fireReplace(string, regex, replaceString)#

This example returns "Hello Mr. Bond". If you did not prohibit the capturing of the Hi/
Hello group, the \2 backreference would end up referring to that group instead of "
Bond", and the result would be "Hello Mr.ello".

146

Chapter 7 Using Regular Expressions in Functions

Returning matched subexpressions

The REFind and REFindNoCase functions return the location in the search string of the first
match of the regular expression. Even though the search string in the next example
contains two matches of the regular expression, the function only returns the index of the

first:
<{cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG BIG string")>
<l--- The value of IndexOfOccurrence is 5 --->

To find all instances of the regular expression, you must call the REFind and REFindNoCase
functions multiple times.

Both the REFind and REFindNoCase functions take an optional third parameter that
specifies the starting index in the search string for the search. By default, the starting
location is index 1, the beginning of the string.

To find the second instance of the regular expression in this example, you call REFind with
a starting index of 8:

<{cfset IndexOfOccurrence=REFind(" BIG ", "Some BIG BIG string", 8)>
<l--- The value of IndexOfOccurrence is 9 --->

In this case, the function returns an index of 9, the starting index of the second string "

BIG".

To find the second occurrence of the string, you must know that the first string occurred
at index 5 and that the string’s length was 5. However, REFind only returns starting index
of the string, not its length. So, you either must know the length of the matched string to
call REFind the second time, or you must use subexpressions in the regular expression.

The REFind and REFindNoCase functions let you get information about matched
subexpressions. If you set these functions’ fourth parameter, ReturnSubExpression, to
True, the functions recurn a CEML structure with two arrays, pos and Ten, containing the
positions and lengths of text strings that match the subexpressions of a regular expression,
as the following example shows:

<{cfset slenPos=REFind(" BIG ", "Some BIG BIG string", 1, "True")>

<cfoutput>

<cfdump var="{#sLenPos#">
</cfoutput>

The following figure shows the output of the cfdump tag:

Element one of the pos array contains the starting index in the search string of the string
that matched the regular expression. Element one of the Ten array contains length of the
matched string. For this example, the index of the first " BIG " string is 5 and its length is
also 5. If there are no occurrences of the regular expression, the pos and Ten arrays each
contain one element with a value of 0.

Returning matched subexpressions 147

You can use the returned information with other string functions, such as mid. The
following example returns that part of the search string matching the regular expression:
<cfset myString="Some BIG BIG string">
{cfset slLenPos=REFind(" BIG ", myString, 1, "True")>
<cfoutput>

#mid(myString, slenPos.pos[1], slLenPos.len[11)#
</cfoutput>
Each additional element in the pos array contains the position of the first match of each
subexpression in the search string. Each additional element in Ten contains the length of
the subexpression’s match.

In the previous example, the regular expression " BIG " contained no subexpressions.
Therefore, each array in the structure returned by REFind contains a single element.

After executing the previous example, you can call REFind a second time to find the
second occurrence of the regular expression. This time, you use the information returned
by the first call to make the second:

<cfset newstart = slLenPos.pos[1] + sLenPos.len[1] - 1>
<!--- subtract 1 because you need to start at the first space --->
{cfset slLenPos?=REFind(" BIG ", "Some BIG BIG string", newstart, "True")>
<cfoutput>
<cfdump var="ffsLenPos2#">
</cfoutput>

The following figure shows the output of the cfdump tag:

LEN1(5
PO |9

If you include subexpressions in your regular expression, each element of pos and Ten
after element one contains the position and length of the first occurrence of each
subexpression in the search string.

In the following example, the expression [A-Za-z]+ is a subexpression of a regular
expression. The first match for the expression ([A-Za-z]+)[]+, is “is is”.

<cfset slenPos=REFind("([A-Za-z1]+)[I+\1",
"There is is a cat in in the kitchen", 1, "True")>
<cfoutput>
<cfdump var="#sLenPos#">
</cfoutput>

148

Chapter 7 Using Regular Expressions in Functions

The following figure shows the output of the cfdump tag:

LENM

— ||| o | —
1| =1l 2| h

POs

[

The entries sLenPos.pos[1] and sLenPos.len[1] contain information about the match of
the entire regular expression. The array elements sLenPos.pos[2] and sLenPos.len[2]
contain information about the first subexpression (“is”). Because REFind returns
information on the first regular expression match only, the sLenPos structure does not
contain information about the second match to the regular expression, "in in".

The regular expression in the following example uses two subexpressions. Therefore, each
array in the output structure contains the position and length of the first match of the
entire regular expression, the first match of the first subexpression, and the first match of
the second subexpression.

<cfset sString = "apples and pears, apples and pears, apples and pears">

<cfset regex = "(apples) and (pears)">

<{cfset slenPos = REFind(regex, sString, 1, "True")>

<cfoutput>

<cfdump var="#sLenPosi#">
</cfoutput>

The following figure shows the output of the cfdump tag:

LE| 115

POE(11

2(1
312

For a full discussion of subexpression usage, see the sections on REFind and
REFindNoCase in the ColdFusion Functions chapter in CFML Reference.

Specifying minimal matching

The regular expression quantifiers 2, *, +, {min,} and {min,max} specify a minimum and/
or maximum number of instances of a given expression to match. By default, ColdFusion
locates the greatest number characters in the search string that match the regular
expression. This behavior is called maximal matching.

Returning matched subexpressions 149

For example, you use the regular expression "(.*)" to search the string "one</
b> two". The regular expression "(.*)", matches both of the following:
e one

e one two

By default, ColdFusion always tries to match the regular expression to the largest string
in the search string. The following code shows the results of this example:

<cfset slLenPos=REFind("(.*)", "<bd>one two", 1, "True")>
<cfoutput>

<cfdump var="#sLenPosi#">
</cfoutput>

The following figure shows the output of the cfdump tag:

posf[1

SN EE

Thus, the starting position of the string is 1 and its length is 21, which corresponds to the
largest of the two possible matches.

However, sometimes you might want to override this default behavior to find the shortest
string that matches the regular expression. ColdFusion includes minimal-matching
quantifiers that let you specify to match on the smallest string. The following table
describes these expressions:

Expression Description

*? minimal-matching version of *

+7? minimal-matching version of +

27 minimal-matching version of ?

{min,}? minimal-matching version of {min,}

{min,max}? minimal-matching version of {min,max}

{n}? (no different from {n}, supported for notational consistency)

If you modify the previous example to use the minimal-matching syntax, the code is as
follows:

<cfset slenPos=REFind("(.*?)", "one two", 1, "True")>
<cfoutput>

<cfdump var="#sLenPos#">
</cfoutput>

150 Chapter7 Using Regular Expressions in Functions

The following figure shows the output of the cfdump tag:

1

POS |T

4

LEL]

2

e =

Thus, the length of the string found by the regular expression is 10, corresponding to the
string "one".

Returning matched subexpressions 151

Regular expression examples

The following examples show some regular expressions and describe what they match:

Expression

Description

[\?&]value=

[A-Z7:(\\[A-Z20-9_1+)+

[A-Za-z][A-Za-z0-9_1*

([A-Za-z]1[A-Za-z0-9_1*) (\.[A-Za-z][A-Za-z0-9_1%)?

(\+|-)7[1-97[0-91*

(\+]-)?[1-9100-91*(\.[0-91%)?
(\+[-)?[1-9I\.[0-9]*E(\+| -)?[0-91+

a{2,4}

(ba){3,}

A URL parameter value in a URL.

An uppercase DOS/Windows path in
which (a) is not the root of a drive, and
(b) has only letters, numbers, and
underscores in its text.

A ColdFusion variable with no
qualifier.

A ColdFusion variable with no more
than one qualifier; for example,
Form.VarName, but not
Form.Image.VarName.

An integer that does not begin with a
zero and has an optional sign.

A real number.

A real number in engineering notation.

w9,

Two to four occurrences of “a”: aa,

aaa, aaaa.

At least three “ba” pairs: bababa,
babababa, and so on.

Regular expressions in CFML

The following examples of CFML show some common uses of regular expression
functions:

Expression Returns

REReplace (CGI.Query_String, "CFID=[0-91+[&]*", "") The query string with parameter
CFID and its numeric value

stripped out.

REReplace(“I Love Jellies”, ”[[:lower:11”,”x”,”ALL” | XXX JXXXXXX

REReplaceNoCase(“cabaret”,”[A-2]", “G”,”ALL”) GGGGGGG

RERepTace (Report,"\$[0-9,]*\.[0-9]*", "gx** xxm)n —mm) The string value of the variable
Report with all positive numbers

in the dollar format changed to
"$***.**“.

REFind ("[Uul\.?[SsI\.?[Aa}\.?", Report) The position in the variable
Report of the first occurrence of
the abbreviation USA. The letters
can be in either case and the
abbreviation can have a period

after any letter.

152 Chapter7 Using Regular Expressions in Functions

Expression Returns

REFindNoCase("a+c","ABCAACCDD") 4

REReplace("There is is coffee in the the kitchen", There * coffee in * kitchen
"([A-Za-z]+)[J#\L", ™" "ALL")

REReplace(report, "<[*>]%>", "", "All") Removes all HTML tags from a

string value of the report variable.

Regular expression examples 153

Types of regular expression technologies

Many types of regular expression technologies are available to programmers. JavaScript,
Perl, and POSIX are all examples of different regular expression technologies. Each
technology has its own syntax specifications and is not necessarily compatible with other
technologies.

ColdFusion supports regular expressions that are Perl compliant with a few exceptions:

A period, ., always matches newlines

In replacement strings, use \n instead of $n for backreference variables. ColdFusion
escapes all $ in the replacement string.

You do not have to escape backslashes in replacement strings. ColdFusion escapes
them, with the exception of case conversion sequences or escaped versions (e.g. \u or
\\u).

Embedded modifiers ((?1), etc.) always affect the entire expression, even if they are
inside a group.

\Q and the combinations \u\L and \\U are not supported in replacement strings.

The following Perl statements are not supported:

Lookbehind (2<=) (<?!)
\x{hhhh}

\N

\p

\C

An excellent reference on regular expressions is Mastering Regular Expressions, by Jeffrey E.
E Friedl, O'Reilly & Associates, Inc., 1997, ISBN: 1-56592-257-3, available at htep://

www.oreilly.com.

154 Chapter 7 Using Regular Expressions in Functions

PART 11
Reusing CFML Code

This part describes techniques for reusing code in ColdFusion pages.
These techniques let you write your code once and use it, without copying
it, in many places. These techniques include the cfinclude tag, user-defined
functions, custom tags, ColdFusion components, and ColdFusion
Extension (CFX) tags.

The following chapters are included:

Reusing Code in ColdFusion Pages........ccooicoveeocoeeeeeeeeeeeeeeeee 157
Writing and Calling User-Defined Functions ..o, 167
Creating and Using Custom CFML TaGSooiiieeeeeeeeeeeeeeeeeeeeeeeee, 197
Building and Using ColdFusion Componentscc.ccooeeeeeecoeeoeeeee 217

Building Custom CEXAPITAQGSvievveeeeeeeeeeeeeeeeeeeeeeeeeeeees 243

CHAPTER 8
Reusing Code in ColdFusion Pages

This chapter describes techniques for reusing code in ColdFusion pages. These
techniques let you write your code once and use it, without copying it, in many places.
This chapter describes the techniques and their features, and provides advice on selecting
among the techniques.

Contents

o About reusable CEFML elements.......ccciovruiruerierieieieieeeieeie e 158
o Including pages with the cfinclude tag......ccoevevveineineineincccccee 158
¢ Calling user-defined fUnNCHONSc.ccvvvrveueierinirieiciircce s 161
o Using custom CEML tags.......ccocoviiiiiiiiiiiiiiiiiccccc 162
® USING CEX TAZS -vvevveveneetieeieieieectetet sttt sttt ea e 164
o Using ColdFusion COMPONENTS.c.cueuirvereueuiriniereieiiierereieieereresetseeseeseeenenesenes 165
o Selecting among ColdFusion code reuse methods.........cccccouvcuiiinnciiincccne. 166

157

About reusable CFML elements

ColdFusion provides you with several types of reusable elements, sections of code that
you can create once and use multiple times in an application. Many of these elements
also let you extend the built-in capabilities of ColdFusion. ColdFusion provides the
following reusable CFML elements:
e ColdFusion pages you include using the cfinclude tag
e User-defined functions (UDFs)
e Custom CFML tags
¢ CFX (ColdFusion Extension) tags
¢ ColdFusion components
The following sections describe the features of each of these elements and provide
guidelines for determining which of these tools to use in your application. Other chapters
describe the tools in detail. The last section in this chapter includes a table that helps you
chose among these techniques for different purposes.
ColdFusion can also use elements developed using other technologies, including the
following:
o JSP tags from JSP tag libraries
For information on using JSP tags, see Chapter 32, “Integrating J2EE and Java
Elements in CFML Applications” on page 759.
e Java objects, including objects in the Java runtime environment and JavaBeans
For information on using Java objects, see Chapter 32, “Integrating J2EE and Java
Elements in CFML Applications” on page 759.
¢ Microsoft COM (Component Object Model) objects
For information on using COM objects, see Chapter 33, “Integrating COM and
CORBA Objects in CFML Applications” on page 785.
¢ CORBA (Common Object Request Broker Architecture) objects
For information on using CORBA objects, see Chapter 33, “Integrating COM and
CORBA Objects in CFML Applications” on page 785.
o Web services

For information on using web services, see Chapter 31, “Using Web Services” on

page 729

Including pages with the cfinclude tag

The cfinclude tag adds the contents of a ColdFusion page to another ColdFusion page,
as if the code on the included page were part of the page that uses the cfinclude tag. It
lets you pursue a “write once use multiple times” strategy for ColdFusion elements that
you incorporate in multiple pages. Instead of copying and maintaining the same code on
multiple pages, you can store the code in one page and then refer to it in many pages. For
example, the cfinclude tag is commonly used to put a header and footer on multiple
pages. This way, if you change the header or footer design, you only change the contents
of a single file.

158

Chapter 8 Reusing Code in ColdFusion Pages

The model of an included page is that it is part of your page; it just resides in a separate
file. The cfinclude tag cannot pass parameters to the included page, but the included
page has access to all the variables on the page that includes it. The following figure
shows this model:

=HTML=

TABLE=
N D |C
- =TR==TD=
/ =CFINCLUDE) -— / Induded Te:xt Here
TEMP LATE ="Tem plate cfm"= = TD==TR=

MyPagesim | Lpirwis Template.cim | </TABLE=

=HTML=

=TABLE=
=TR==TD=

— Indluded Tex Here
=TD=MR=

My Page.cfm SHELE

=HTML=

Using the cfinclude tag

When you use the cfinclude tag to include one ColdFusion page in another ColdFusion
page, the page that includes another page is referred to as the calling page. When
ColdFusion encounters a cfinclude tag it replaces the tag on the calling page with the
output from processing the included page. The included page can also set variables in the
calling page.

The following line shows a sample cfinclude tag:

<cfinclude template = "header.cfm">

Note: You cannot break CFML code blocks across pages. For example, if you open a
cfoutput block in a ColdFusion page, you must close the block on the same page; you
cannot include the closing portion of the block in an included page.

ColdFusion searches for included files as follows:
o The template attribute specifies a path relative to the directory of the calling page.
o If the template value is prefixed with a forward slash (/), ColdFusion searches for the

included file in directories that you specify on the Mappings page of the ColdFusion
Administrator.

Caution: A page must not include itself. Doing so causes an infinite processing loop, and
you must stop the ColdFusion Server to resolve the problem.

To include code in a calling page:

1 Create a ColdFusion page named header.cfm that displays your company’s logo. Your
page can consist of just the following lines, or it can include many lines to define an
entire header:

(For this code to work, you must also put your company’s logo as a GIF file in the
same directory as the header.cfm file.)

Including pages with the cfincludetag 159

2 Create a ColdFusion page with the following content:
<html>
<head>
<title>Test for Include</title>
</head>
<body>
<cfinclude template="header.cfm">
</body>
</html>

3 Save the file as includeheader.cfm and view it in a browser.

The header should appear along with the logo.

Recommended uses

Consider using the cfinclude tag in the following cases:
o For page headers and footers

¢ To divide a large page into multiple logical chunks that are easier to understand and
manage

o For large “snippets” of code that are used in many places but do not require
parameters or fit into the model of a function or tag

160 Chapter 8 Reusing Code in ColdFusion Pages

Calling user-defined functions

User-defined functions (UDFs) let you create application elements in a format in which
you pass in arguments and get a return a value. You can define UDFs using CFScript or
the cffunction tag. The two techniques have several differences, of which the following
are the most important:

e Ifyou use the cffunction tag, your function can include CFML tags.

e If you write your function using CFScript, you cannot include CFML tags.

You use UDFs in your application pages as you use standard ColdFusion functions. You
can create a function for an algorithm or procedure that you use frequently, and then use
the function wherever you need the procedure.

As with custom tags, you can easily distribute UDFs to others. For example, the
Common Function Library Project at http://www.cflib.org is an open-source collection
of CFML user-defined functions.

Calling UDFs

To call a UDF, use it as you would a ColdFusion built-in function. For example, the
following line calls the function MyFunct and passes it two arguments:

<{cfset returnValue=MyFunct(Argl, Arg2)>

Recommended uses

Typical uses of UDFs include, but are not limited to, the following:

¢ Data manipulation routines, such as a function to reverse an array

o String and date and time routines, such as a function to determine whether a string is
a valid IP address

¢ Mathematical calculation routines, including standard trigonometric and statistical
operations or calculating loan amortization

¢ Routines that call functions externally, for example using COM or CORBA, such as
routines to determine the space available on a Windows file system drive

Consider using UDFs in the following circumstances:

¢ You must pass in a number of arguments, process the results, and return a value.
UDFs can return complex values, including structures that contain multiple simple
values.

¢ You want to provide logical units, such as data manipulation functions.

e Your code must be recursive.

¢ You distribute your code to others.

If you can create either a UDF or a custom CFML tag for a particular purpose, first

consider creating a UDF because invoking it requires less system overhead than using a

custom tag.

For more information

For more information on user-defined functions, see Chapter 9, “Writing and Calling
User-Defined Functions” on page 167.

Calling user-defined functions 161

Using custom CFML tags

Custom tags written in CFML behave like ColdFusion tags. They can do all of the

following:

o Take arguments.

¢ Have tag bodies with beginning and ending tags.

¢ Can do specific processing when ColdFusion encounters the beginning tag.

¢ Can do processing that is different from the begging tag processing when ColdFusion
encounters the ending tag.

¢ Have any valid ColdFusion page content in their bodies, including both ColdFusion
built-in tags and custom tags (referred to as nested tags), or even JSP tags or
JavaScript.

o Be called recursively; that is, a custom tag can, if designed properly, call itself in the
tag body.

e Return values to the calling page in a common scope or the calling page’s Variables
scope, but custom tags do not return values directly, the way functions do.

Although a custom tag and a ColdFusion page that you include using the cfinclude tag
are both ColdFusion pages, they differ in how they are processed. When a page calls a
custom tag, it hands processing off to the custom tag page and waits until the custom tag
page completes. When the custom tag finishes, it returns processing (and possibly data)
to the calling page; the calling page can then complete its processing. The following
figure shows how this works. The arrows indicate the flow of ColdFusion processing the

pages.
=HTML= =CFIF lsDefned("atribute =.T ype")=
=HEAD= =CFIF Altributes Type 1S "Date"=
=TITLE=Tille=/TITLE= =CFOUTPUT=#DateF ormat(Mow D#=CFOUTPUT=
=HEAD= =CFELSEIF Altributes Type IS "Time"=
<BODY= <CFOUTPUT=#TimeF ormat(Mow = CFOUTPUT=
=H3=The dateis =H3= =CFELSE=
=CFOUTPUT=#Mow#=/ICFOUTPUT=

=CF _MOi= =/CFIF=

=CFELSE=

=B00 Y= =CFOUTPUT=#Mow#=CFOUTPUT=

<HTML= ¥ | S/CFIF |
T

My Page.cfm oy cfim

Calling custom CFML tags

Unlike built-in tags, you can invoke custom CFML tags in the following three ways:
o Call a tag directly.

o Call a tag using the cfmodule tag.

e Use the cfimport tag to import a custom tag library directory.

162 Chapter 8 Reusing Code in ColdFusion Pages

To call a CFML custom tag directly, precede the file name with cf_, omit the .cfm
extension, and put the name in angle brackets (<>). For example, use the following line
to call the custom tag defined by the file mytag.cfm:

<cf_myTag>

If your tag takes a body, end it with the same tag name preceded with a forward slash (/),
as follows:

</cf_myTag>

For information on using the cfmodule and cfimport tags to call custom CFML tags, see
Chapter 10, “Creating and Using Custom CFML Tags” on page 197.

Recommended uses

ColdFusion custom tags let you abstract complex code and programming logic into

simple units. These tags let you maintain a CFML-like design scheme for your code. You

can easily distribute your custom tags and share tags with others. For example, the

Macromedia ColdFusion Developer’s Exchange includes a library of custom tags that

perform a wide variety of often-complex jobs; see http://devex.macromedia.com/

developer/gallery/index.cfm.

Consider using CFML custom tags in the following circumstances:

¢ You need a tag-like structure, which has a body and an end tag, with the body
contents changing from invocation to invocation.

¢ You want to associate specific processing with the beginning tag, the ending tag, or
both tags.

¢ To use a logical structure in which the tag body uses “child” tags or subtags. This
structure is similar to the cfform tag, which uses subtags for the individual form
fields.

¢ You do not need a function format in which the calling code uses a direct return
value.

¢ Your code must be recursive.

¢ Your functionality is complex.

o To distribute your code in a convenient form to others.

If you can create either a UDF or a custom CFML tag for a purpose, first consider

creating a UDF because invoking it requires less system overhead than using a custom

tag.

For more information

For more information on custom CFML tags, see Chapter 10, “Creating and Using
Custom CFML Tags” on page 197.

Using custom CFML tags 163

Using CFX tags

ColdFusion Extension (CFX) tags are custom tags that you write in Java or C++.
Generally, you create a CFX tag to do something that is not possible in CFML. CFX tags
also let you use existing Java or C++ code in your ColdFusion application. Unlike CFML
custom tags, CFX tags cannot have bodies or ending tags.

CFX tags can return information to the calling page in a page variable or by writing text
to the calling page.

CFX tags can do the following:

¢ Have any number of custom attributes.

¢ Create and manipulate ColdFusion queries.

¢ Dynamically generate HTML to be returned to the client.

o Set variables within the ColdFusion page from which they are called.

o Throw exceptions that result in standard ColdFusion error messages.

Calling CFX tags

To use a CFX tag, precede the class name with cfx_ and put the name in angle brackets.
For example, use the following line to call the CFX tag defined by the MyCFXClass class
and pass it one attribute.

<cfx_MyCFXCTass myArgument="argl">

Recommended uses

CFX tags provide one way of using C++ or Java code. However, you can also create Java

classes and COM objects and access them using the cfobject tag. CFX tags, however,

provide some built-in features that the cfobject tag does not have:

o CFX tags are easier to call in CFML code. You use CFX tags directly in CFML code
as you would any other tag, and you can pass arguments using a standard tag format.

¢ ColdFusion provides predefined classes for use in your Java or C++ code that facilitate
CFX tag development. These classes include support for request handling, error
reporting, and query management.

You should consider using CFX tags in the following circumstances:

¢ You already have existing application functionality written in C++ or Java that you
want to incorporate into your ColdFusion application.

¢ You cannot build the functionality you need using ColdFusion elements.

¢ You want to provide the new functionality in a tag format, as opposed to using the
cfobject tag to import native Java or COM objects.

¢ You want use the Java and C++ classes provided by ColdFusion for developing your
CFX code.
For more information

For more information on CFX tags, see Chapter 12, “Building Custom CFXAPI Tags”
on page 243.

164 Chapter 8 Reusing Code in ColdFusion Pages

Using ColdFusion components

Unlike other Coldfusion reusable elements, ColdFusion components encapsulate

multiple, related, functions. A ColdFusion component is essentially a set of related

UDFs and variables, with additional functionality to provide and control access to the

component contents. ColdFusion components can make their data private, so that it is

available to all functions (also called methods) in the component, but not to any

application that uses the component.

ColdFusion components have the following features:

o They are designed to provide related services in a single unit.

o They can provide web services and make them available over the internet.

o They can provide ColdFusion services that Macromedia Flash clients can call directly.

o They have several features that are familiar to object-oriented programmers including
data hiding, inheritance, packages, and introspection.

Creating and using ColdFusion components

Creating and using a component is more complex than creating and using a user-defined
function (UDE). For example, you specify a component and one or more functions. You
can invoke ColdFusion components in many ways, including using the cfinvoke and
cfobject tags. You can also use forms, URLs, and the Flash client-side ActionScript.

To invoke a component method with a cfinvoke tag, use code such as the following:

<cfinvoke component="componentName" method="methodName"
returnVariable="variableName" argumentCollection="argumentStruct">

Recommended uses

Consider using ColdFusion components when doing the following:

o Creating web services. (To create web services in ColdFusion, you must use
components.)

o Creating services that are callable by Flash clients.
o Creating libraries of related functions, particularly if they must share data.

o Using integrated application security mechanisms based on roles and the requestor
location.

¢ Developing code in an object-oriented manner, in which you use methods on objects
and can create objects that extend the features of existing objects.

For more information

For more information on using ColdFusion components, see Chapter 11, “Building and
Using ColdFusion Components” on page 217.

Using ColdFusion components 165

Selecting among ColdFusion code reuse methods

The following table lists common reasons to employ code reuse methods and indicates
the techniques to consider for each purpose. The letter P indicates that the method is
preferred. (There can be more than one preferred method.) The letter A means that the
method provides an alternative that might be useful in some circumstances.

This table does not include CFX tags. You use CFX tags only when you should code your
functionality in C++ or Java. For more information about using CFX tags, see “Using
CFX tags” on page 164.

cfinclude Custom
Purpose tag tag UDF Component

Provide code, including CFML, HTML, and P
static text, that must be used in multiple
pages.

Deploy headers and footers.
Include one page in another page.

Divide pages into smaller units.

> U T T

Use variables from a calling page.
Implement code that uses recursion.
Distribute your code to others.

Operate on a body of HTML or CFML text.

Use subtags.

> TW, T T T T

Provide a computation, data manipulation,
or other procedure.

Provide a single functional element that A P
takes any number of input values and
returns a (possibly complex) result.

Use variables, whose variable names might A P P
change from use to use.

Provide accessibility from Flash clients. A A P
Use built-in user security features. A

Encapsulate multiple related functions and P
properties.

Create web services.

Implement object-oriented coding
methodologies.

166 Chapter 8 Reusing Code in ColdFusion Pages

CHAPTER 9
Writing and Calling User-Defined

Functions

This chapter describes how to create and call user-defined functions (UDFs).

Contents

o About user-defined fUNCHONS.c.ciiriiiiiiiiiccte s 168
o Calling user-defined fUNCHONS «....covevirieiirieinieiicicc et 169
o Creating user-defined fUNCHONSc.covvviveueininieiciirncceeecceceenenees 169
¢ Calling functions and using variables............cccoccoicinniiiiinniiiiccccee 180
o A User-defined function example.........ccovveuerieinieinieineineineincineeseeneennenns 182
o Using UDFs effectivelyccccomrieiininiereiininieciinieeiccineeceesneneeeseenene s 184

167

About user-defined functions

You can create user-defined functions, or UDFs (also known as custom functions), and

use them in your application pages as you do standard ColdFusion functions. This lets

you create a function for an algorithm or procedure that you use frequently, and then use

the function wherever you need the procedure. If you must change the procedure, you

change only one piece of code. You can use your function anywhere that you can use a

ColdFusion expression: in tag attributes, between pound (#) signs in output, and in

CFScript code. Typical uses of UDFs include, but are not limited to the following:

¢ Data manipulation routines, such as a function to reverse an array

¢ String and date/time routines, such as a function to determine whether a string is a
valid IP address

e Mathematical calculation routines, including standard trigonometric and statistical
operations or calculating loan amortization

¢ Routines that call functions externally, for example using COM or CORBA,
including routines to determine the space available on a Windows file system drive

For information about selecting among User-defined functions, custom tags, and
ColdFusion components, see Chapter 8, “Reusing Code in ColdFusion Pages” on
page 157.

Note: The Common Function Library Project at http://www.cflib.org is an open source
collection of CFML user-defined functions.

To use a user-defined function, you define the function and then call it. Typically you
define the function on your ColdFusion page or a page that you include. You can also
define the function on one page and put it in a scope that is shared with the page that
calls it. (For more information on UDF scoping, see “Specifying the scope of a function”
on page 184.) You can also put commonly used functions on a single ColdFusion page
and include it in your Application.cfm page.

168

Chapter 9 Writing and Calling User-Defined Functions

Calling user-defined functions

You can call a UDF in two ways:
e With unnamed, positional arguments, as you would call a built-in function
e With named arguments, as you would use attributes in a tag

You can use either technique for any function. However, if you use named arguments,
you must use the same argument names to call the function as you use to define the
function. You cannot call a function with a mixture of named and unnamed arguments.
or more information on calling functions with and without argument names, see
F format alling funct th and without arg t
“Calling functions and using variables” on page 180.
g g g

One example of a user-defined function is a Totallnterest function that calculates loan
payments based on a principal amount, annual percentage, and loan duration in months
(For this function’s definition, see “A User-defined function example” on page 182). You
might call the function without argument names on a form’s action page, as follows:
<cfoutput>

Interest: #fTotalInterest(Form.Principal, Form.Percent, Form.Months)#
</cfoutput>

You might call the function with argument names, as follows:

<cfoutput>

Interest: #fTotalInterest(principal=Form.Principal, annualPercent=Form.Percent,
months=Form.Months)#

</cfoutput>

Creating user-defined functions

You can use tags or CFScript to create a UDE Each technique has advantages and
disadvantages.

Creating functions using CFScript

You use the function statement to define the function in CFScript. CFScript function

definitions have the following features and limitations:

o The function definition syntax is familiar to anyone who uses JavaScript or most
programming languages.

o CFScript is efficient for writing business logic, such as expressions and conditional
operations.

o CFScript function definitions cannot include CFML tags.

The following is a CFScript definition for a function that returns a power of 2:

<cfscript>
function twoPower(exponent)
{
return 2”exponent;
}
</cfscript>

For more information on how to use CFScript to define a function, see “Defining
functions in CFScript” on page 174.

Calling user-defined functions 169

Creating functions using tags

You use the cffunction tag to define a UDF in CFML. The cffunction tag syntax has the

following features and limitations:

e Developers who have a background in CFML or HTML, but no scripting or
programming experience will be more familiar with the syntax.

¢ You can include any ColdFusion tag in your function definition. Therefore, you can
create a function, for example, that accesses a database.

¢ You can embed CFScript code inside the function definition.

o The cffunction tag provides attributes that enable you to easily limit the execution of
the tag to authorized users or specify how the function can be accessed.

The following code uses the cffunction tag to define the exponentiation function:

<cffunction name="twoPower" output=True>
<{cfargument name="exponent">
<cfreturn 2”exponent>

</cffunction>

For more information on how to use the cffunction tag to define a function, see
“Defining functions using the cffunction tag” on page 177.

Rules for function definitions

The following rules apply to functions that you define using CFScript or the cffunction

tag:

o The function name must be unique. It must be different from any existing variable,
UDF, or built-in function name.

o The function name must not start with the letters cf in any form. (For example,
CF_MyFunction cfmyFunction, and cfxMyFunction are not valid UDF names.)

e You cannot redefine or overload a function. If a function definition is active,
ColdFusion generates an error if you define a second function with the same name.

¢ You cannot nest function definitions; that is, you cannot define one function inside
another function definition.

o The function can be recursive, that is, the function definition body can call the
function.

e The function does not have to return a value.

You can define a function in the following places:

e On the page where it is called. You can even define it below the place on the page
where it is called, but this poor coding practice can result in confusing code.

¢ On a page that you include using a cfinclude tag. The cfinclude tag must be
executed before the function gets called. For example, you can define all your
application’s functions on a single page and place a cfinclude tag at the top of pages
that use the functions.

¢ On any page that puts the function name in a scope common with the page on which
you call the function.

¢ On the Application.cfm page.

170

Chapter 9 Writing and Calling User-Defined Functions

For recommendations on selecting where you define functions, see the sections “Using
Application.cfm and function include files” on page 184 and “Specifying the scope of a
function” on page 184.

About the Arguments scope
All function arguments exist in their own scope, the Arguments scope.

The Arguments scope exists for the life of a function call. When the function returns, the
scope and its variables are destroyed.

However, destroying the Argument scope does not destroy variables, such as structures or
query objects, that ColdFusion passes to the function by reference. The variables on the
calling page that you use as function arguments continue to exist; if the function changes
the argument value, the variable in the calling page reflects the changed value.

The Arguments scope is special, in that you can treat the scope as either an array ora
structure. This dual nature of the Arguments scope is useful because it makes it easy to
use arguments in any of the following circumstances:

¢ You define the function using CFScript.

¢ You define the function using the cffunction tag.

¢ You pass arguments using argument name=value format.

¢ You pass arguments as values only.

o The function takes optional, undeclared arguments.

The following sections describe the general rules for using the Arguments scope as an
array and a structure. For more information on using the Arguments scope in functions
defined using CFScript, see “Using the Arguments scope in CFScript” on page 176. For
more information on using the Arguments scope in functions defined using the
cffunction tag, see “Using the Arguments scope in cffunction definitions” on page 179.

The contents of the Arguments scope

The following rules apply to the Arguments scope and its contents:

e The scope contains all the arguments passed into a function.

e Ifyou use cffunction to define the function, the scope always contains an entry "slot"
for each declared argument, even if you do not pass the argument to the function
when you call it. If you do not pass a declared (optional) argument, the scope entry
for that argument is empty.

When you call a function that you defined using CFScript, you must pass the
function a value for each argument declared in the function definition. Therefore, the
Arguments scope for a CFScript call does not have empty slots.

The following example shows these rules. Assume that you have a function declared, as
follows:

<cffunction name="TestFunction">
<{cfargument name="Argl" >
<cfargument name="Arg2">
</cffunction>

You can call this function with a single argument, as in the following line:
<{cfset TestFunction(1)>

Creating user-defined functions 171

The resulting Arguments scope looks like the following:

As an array As a structure

Entry Value Entry Value

1 1 Argl 1

2 undefined Arg2 undefined

In this example, the following functions return the value 2 because there are two defined
arguments:

ArrayLen(Arguments)

StructCount(Arguments)

However, the following tests return the value False, because the contents of the second
element in the Arguments scope is undefined.

Isdefined("Arguments.Arg2")

testArg2 = Arguments[2]1>
Isdefined("testArg2")

Note: The IsDefinedfunction does not test the existence of array elements. To test whether
an array index contains data, copy the array element to a simple variable and use the
IsDefined function to test the existence of the copy.

Using the Arguments scope as an array

The following rules apply to referencing Arguments scope as an array:

o Ifyou call the function using unnamed arguments, the array index is the position of
the argument in the function call.

¢ If you use names to pass the arguments, the array indexes correspond to the order in
which the arguments are declared in the function definition.

¢ If you use names to pass arguments, and do not pass all the arguments defined in the
function, the Arguments array has an empty entry at the index corresponding to the
argument that was not passed. This rule applies only to functions created using the
cffunction tag.

e If you use a name to pass an optional argument that is not declared in the function
definition, the array index of the argument is the sum of the following;:
a The number of arguments defined with names in the function.

b The position of the optional argument among the arguments passed in that do
not have names defined in the function.

However, using argument names in this manner is not good programming practice
because you cannot ensure that you always use the same optional argument names
when calling the function.

To demonstrate these rules, define a simple function that displays the contents of its
Arguments array and call the function with various argument combinations, as shown in
the following example:

{cffunction name="TestFunction" >

<cfargument name="Argl">
<cfargument name="Arg2">

172

Chapter 9 Writing and Calling User-Defined Functions

<cfloop index="1" from="1" to="#fArraylLen(Arguments)s#">
<cfoutput>Argument #i#: #Arguments[il#
</cfoutput>

</cfloop>
</cffunction>

0One Unnamed argument

{cfset TestFunction(1)>

Two Unnamed arguments

{cfset TestFunction(l, 2)>

<{strong>Three Unnamed arguments

<{cfset TestFunction(1l, 2, 3)>
<{strong>Argl:

<{cfset TestFunction(Argl=8)>
Arg2:

{cfset TestFunction(Arg2=9)>

<{strong>Argl=8, Arg2=9:

<{cfset TestFunction(Argl=8, Arg2=9)>
<{strong>Arg2=6, Argl=/

{cfset TestFunction(Arg2=6, Argl=7)>
Argl=8, Arg?=9, Arg3=10:

{cfset TestFunction(Argl=8, Arg?2=9, Arg3=10)>
<{strong>Arg2=6, Arg3=99, Argl=7

<{cfset TestFunction(Arg2=6, Arg3=99, Argl=7/)>

Note: Although you can use the Arguments scope as an array, the IsArray(Arguments)
function always returns false and the cfdump tag displays the scope as a structure.

Using the Arguments scope as a structure

The following rule applies when referencing Arguments scope as a structure:

o Use the argument names as structure keys. For example, if your function definition

includes a Principal argument, refer to the argument as Arguments.Principal.

The following rules are also true, but aveid writing code that uses them. To ensure program
clarity, only use the Arguments structure for arguments that you name in the function
definition. Use the Arguments scope as an array for optional arguments that you do not

declare in the function definition.

o If the function can take unnamed optional arguments, use an index number as the

key to reference the argument in the structure. For example, if the function
declaration includes two named arguments and you call the function with three
arguments, refer to the third argument as Arguments.3.

Note: The IsDefined function always returns false when you reference an unnamed

optional arguments using structure notation. For example, IsDefined(Arguments.3) for

the function described in the preceding paragraph always returns false.

¢ If you do not name an optional argument in the function definition, but do use a
name for it in the function call, use the name specified in the function call For

example, if you have an unnamed optional argument and call the function using the

name myOptArg for the argument, you can refer to the argument as
Arguments.myOptArg in the function body. This usage, however, is poor
programming practice, as it makes the function definition contents depend on
variable names in the code that calls the function.

Creating user-defined functions

173

Function-only variables

In addition to the Arguments scope, each function can have a number of variables that
exist only inside the function, and are not saved between times the function gets called.
As soon as the function exits, all the variables in this scope are removed.

In CFScript, you create function-only variables with the var statement. Unlike other
variables, you never prefix function-only variables with a scope name.

For more information on using function-only variables, see “Using function-only
variables” on page 181.

Good argument naming practice

An argument’s name should represent its use. For example, the following code is unlikely
to result in confusion:

Lcfscript>
function SumN(Addendl,Addend?)
{ return Addendl + Addend?; }
</cfscript>
{cfset x = 10>
{cfset y = 12>
<cfoutput>#SumN(x, y)iKcfoutput>

The following, similar code is more likely to result in programming errors:

<cfscript>

function SumN(x,y)

{ return x +y; |}
</cfscript>
cfset x = 10>
{cfset y = 12>
<cfoutput>fFSumN(x,y)#<cfoutput>

Defining functions in CFScript

You define functions using CFScript in a manner similar to defining JavaScript
functions. You can define multiple functions in a single CFScript block.

Note: For more information on using CFScript, see Chapter 6, “Extending ColdFusion
Pages with CFML Scripting” on page 115.

CFScript function definition syntax

A CFScript function definition has the following syntax.

function functionName([argNamell[, argNameZ...]])
{

CFScript Statements
}

174 Chapter 9 Writing and Calling User-Defined Functions

The following table describes the function variables:

Function variable = Description

functionName The name of the function. You cannot use the name of a standard
ColdFusion function or any name that starts with “cf”. You cannot
use the same name for two different function definitions. Function
names cannot include periods.

argNamel... Names of the arguments required by the function. The number of
arguments passed into the function must equal or exceed the
number of arguments in the parentheses at the start of the function
definition. If the calling page omits any of the required arguments,
ColdFusion generates a mismatched argument count error.

The body of the function definition must consist of one or more valid CFScript
statements. The body must be in curly braces, even if it is a single statement.

The following two statements are allowed only in function definitions:

Statement

Description

var variableName = expression;

return expression;

Creates and initializes a variable that is local to the
function (function variable). This variable has meaning
only inside the function and is not saved between calls to
the function. It has precedence in the function body over
any variables with the same name that exist in any other
scopes. You never prefix a function variable with a scope
identifier, and the name cannot include periods. The initial
value of the variable is the result of evaluating the
expression. The expression can be any valid ColdFusion
expression, including a constant or even another UDF.

All var statements must be at the top of the function
declaration, before any other statements. You must
initialize all variables when you declare them. You cannot
use the same name for a function variable and an
argument.

Each var statement can initialize only one variable.
You should use the var statement to initialize all

function-only variables, including loop counters and
temporary variables.

Evaluates expression (which can be a variable), returns its
value to the page that called the function, and exits the
function. You can return any ColdFusion variable type.

A simple CFScript example

The following example function adds the two arguments and returns the result:

Lcfscript>

function Sum(a,b)

{
var sum =a + b;
return sum;

Creating user-defined functions 175

}
</cfscript>

In this example, a single line declares the function variable and uses an expression to set it
to the value to be returned. This function can be simplified so that it does not use a
function variable, as follows:

function MySum(a,b) {Return a + b;}

You must always use curly braces around the function definition body, even if it is a
single statement.

Using the Arguments scope in CFScript

A function can have optional arguments that you do not have to specify when you call
the function. To determine the number of arguments passed to the function, use the
following function:

ArrayLen(Arguments)

When you define a function using CFScript, the function must use the Arguments scope
to retrieve the optional arguments. For example, the following SumN function adds two
or more numbers together. It requires two arguments and supports any number of
additional optional arguments. You can refer to the first two, required, arguments as Argl
and Arg2 or as Arguments[1] and Arguments[2]. You must refer to the third, fourth, and
any additional optional arguments as Arguments[3], Arguments[4], and so on.
function SumN(Argl,Arg2)
{

var arg_count = ArraylLen(Arguments);

var sum = 0;

var i = 0;

for(i =1 ; i LTE arg_count; i =1 +1)

{

sum = sum + Arguments[i];
}

return sum;
}

With this function, any of the following function calls are valid:

SumN(Valuel, Value?)
SumN(Valuel, Value2, Value3)
SumN(Valuel, Value2, Value3, Value4)

and so on.

The code never uses the Argl and Arg2 argument variables directly, because their values
are always the first two elements in the Arguments array and it is simpler to step through
the array. Specifying Argl and Arg?2 in the function definition ensures that ColdFusion
generates an error if you pass the function one or no arguments.

Note: Avoid referring to a required argument in the body of a function by both the argument
name and its place in the Arguments scope array or structure, as this can be confusing and
makes it easier to introduce errors.

For more information on the Arguments scope, see “About the Arguments scope” on
page 171.

176

Chapter 9 Writing and Calling User-Defined Functions

Defining functions using the cffunction tag
The cffunction and cfargument tags let you define functions in CFML without using
CFScript.

Note: This chapter describes how to use the cffunction tag to define a function that is not
part of a ColdFusion component. For information on ColdFusion components, see Chapter
11, “Building and Using ColdFusion Components” on page 217. For more information on the
cffunctiontag, see CFML Reference.

The cffunction tag function definition format

A cffunction tag function definition has the following format:

<cffunction name="functionName" [returnType="type" roles="rolelist"
access="accessType" output="Boolean"1>

<cfargument name="argumentName" [Type="type" required="Boolean"
default="defaultValue">]

Function body code

<cfreturn expression>
</cffunction>

where square brackets ([]) indicate optional arguments. You can have any number of
cfargument tags.

The cffunction tag specifies the name you use when you call the function. You can
optionally specify other function characteristics, as described in the following table:

Attribute Description
name The function name.
returnType (Optional) The type of data that the function returns. The valid standard

type names are: any, array, binary, boolean, date, guid, numeric, query,
string, struct, uuid, variableName and void. If you specify any other name
ColdFusion requires the argument to be a ColdFusion component with that
name.

ColdFusion throws an error if you specify this attribute and the function tries
to return data with a type that ColdFusion cannot automatically convert to
the one you specified. For example, if the function returns the result of a
numeric calculation, a returnType attribute of string or numeric is valid, but
array is not.

Creating user-defined functions 177

Attribute Description

roles (Optional) A comma-delimited list of security roles that can invoke this
method. If you omit this attribute, ColdFusion does not restrict user access
to the function.

If you use this attribute, the function executes only if the current user is
logged in using the cfloginuser tag and is a member of one or more of the
roles specified in the attribute. Otherwise, ColdFusion throws an
unauthorized access exception. For more information on user security, see
Chapter 16, “Securing Applications” on page 347.

output (Optional) Determines how ColdFusion processes displayable output in the
function body.

If you do not specify this option, ColdFusion treats the body of the function
as normal CFML. As a result, text and the result of any cfoutput tags in the
function definition body are displayed each time the function executes.

If you specify True or "yes", the body of the function is processed as if it
were in a cfoutput tag. ColdFusion displays variable values and expression
results if you surround the variables and expressions with pound signs.

If you specify False or "no" the function is processed as if it were in a
cfsilent tag. The function does not display any output. The code that calls
the function is responsible for displaying any function results.

You must use cfargument tags for required function arguments and named optional
arguments. All cfargument tags must precede any other CFML code in cffunction tag
body. Therefore, put the cfargument tags immediately following the cffunction opening
tag. The cfargument tag takes the following attributes:

Attribute Description

name The argument name.

type (Optional) The data type of the argument. The type of data that is passed to the
function. The valid standard type names are any, array, binary, boolean, date,
guid, numeric, query, string, struct, uuid, and variableName. If you specify any
other name, ColdFusion requires the argument to be a ColdFusion component
with that name.

ColdFusion throws an error if you specify this attribute and the function is called
with data of a type that ColdFusion cannot automatically convert to the one you
specified. For example, if the argument type attribute is numeric, you cannot
call the function with an array.

required (Optional) A Boolean value specifying whether the argument is required, If set
to True and the argument is omitted from the function call, ColdFusion throws
an error. The default if False.

Because you do not identify arguments when you call a function, all cfargument

tags that specify required arguments must precede any cfargument tags that
specify optional arguments in the cffunction definition.

default (Optional) The default value for an optional argument if no argument value is
passed.

If you specify this attribute, an error occurs if you specify this attribute and set
the required attribute to True.

178

Chapter 9 Writing and Calling User-Defined Functions

Note: The cfargument tag is not required for optional arguments. This feature is useful if a
functions can take an indeterminate number of arguments. If you do not use the cfargument
tag for an optional argument, reference it using its position in the Arguments scope array. For
more information see “Using the Arguments scope as an array” on page 172.

Using a CFML tag in a user-defined function

The most important advantage of using the cffunction tag over defining a function in
CFScript is that you can include CFML tags in the function. Thus, UDFs can
encapsulate activities, such as database lookups, that require ColdFusion tags. Also, you
can use the cfoutput tag to display output on the calling page with minimal coding.

The following example function looks up and returns an employee’s department ID. It
takes one argument, the employee ID, and looks up the corresponding department ID in
the Companylnfo Employee table:

<cffunction name="getDeptID" >
<cfargument name="empID" required="true" type="numeric">
<cfquery dataSource="CompanyInfo" name="deptID">
SELECT Dept_ID
FROM Employee
WHERE Emp_ID = ffempIDj
</cfquery>
<cfreturn deptID.Dept_ID>
</cffunction>

Note: The cfquery tag automatically puts the query result in the Variables scope, so you
cannot limit its result to the This scope.

Using the Arguments scope in cffunction definitions

When you define a function using the cffunction tag, you generally refer to the
arguments directly by name if all arguments are named in the cfargument tags. If you do
use the Arguments scope identifier, follow the rules listed in “About the Arguments
scope” on page 171.

Creating user-defined functions 179

Calling functions and using variables

You can call a function anywhere that you can use an expression, including in pound
signs (#) in a cfoutput tag, in a CFScript, or in a tag attribute value. One function can
call another function, and you can use a function as an argument to another function.

You call user-defined functions the same way you call any built-in ColdFusion functions.

Passing arguments

ColdFusion passes the following data types to the function by value:
o Integers

e Real numbers

o Strings (including lists)

e Date-time objects

o Arrays

As a result, any changes that you make in the function to these arguments do not affect
the variable that was used to call the function, even if the calling code is on the same
ColdFusion page as the function definition.

ColdFusion passes queries, structures, and external objects such as COM objects into the
function by reference. As a result, any changes to these arguments in the function also
change the value of the variable in the calling code.

For an example of the effects of passing arguments, see “Passing complex data” on page
189.

Referencing caller variables

A function can use and change any variable that is available in the calling page, including
variables in the caller’s Variables (local) scope, as if the function was part of the calling
page. For example, if you know that the calling page has a local variable called
Customer_name (and there is no function scope variable named Customer_name) the
function can read and change the variable by referring to it as Customer_name or (using
better coding practice) Variables.Customer_name. Similarly, you can create a local
variable inside a function and then refer to it anywhere in the calling page affer the
function call. You cannot refer to the variable before you call the function.

However, you should generally avoid using the caller’s variables directly inside a function.
Using the caller’s variables creates a dependency on the caller. You must always ensure
that the code outside the function uses the same variable names as the function. This can
become difficult if you call the function from many pages.

You can avoid these problems by using only the function arguments and the return value
to pass data between the caller and the function. Do not reference calling page variables
directly in the function. As a result, you can use the function anywhere in an application
(or even in multiple applications), without concern for the calling code’s variables.

180 Chapter9 Writing and Calling User-Defined Functions

As with many programming practice, there are valid exceptions to this recommendation.

For example you might do any of the following:

o Use a shared scope variable, such as an Application or Session scope counter variable.

o Use the Request scope to store variables used in the function, as shown in “Using the
Request scope for static variables and constants” on page 186.).

o Create context-specific functions that work directly with caller data if you always
synchronize variable names.

Note: If your function must directly change a simple variable in the caller (one that is not
passed to the function by reference), you can place the variable inside a structure argument.

Using function-only variables

Make sure to use the var statement in CFScript UDFs to declare all function-specific
variables, such as loop indexes and temporary variables that are required only for the
duration of the function call. Doing this ensures that these variables are available inside
the function only, and makes sure that the variable names do not conflict with the names
of variables in other scopes. If the calling page has variables of the same name, the two
variables are independent and do not affect each other.

For example, if a ColdFusion page has a cfloop tag with an index variable i, and the tag

body calls a CFScript UDF that also has a loop with a function-only index variable i, the
UDF does not change the value of the calling page loop index, and the calling page does
not change the UDF index. so you can safely call the function inside the cfloop tag body.

In general, use the var statement to declare all UDF variables, other than the function
arguments or shared-scope variables, that you use only inside CFScript functions. Use
another scope, however, if the value of the variable must persist between function calls;
for example, for a counter that the function increments each time it is called.

Using arguments

Function arguments can have the same names, but different values, as variables in the
caller. Avoid such uses for clarity, however.

The following rules apply to argument persistence:

o Because simple variable and array arguments are passed by value, their names and
values exist only while the function executes.

e Because structures, queries, and objects such as COM objects are passed by reference,
the argument name exists only while the function executes, but the underlying daza
persists after the function returns and can be accessed by using the caller’s variable

name. The caller’s variable name and the argument name can, and should, be
different.

Note: |If afunction must use a variable from another scope that has the same name as a
function-only variable, prefix the external variable with its scope identifier, such as Variables
or Form. (However, remember that using variables from other scopes directly in your code is
often poor practice.)

Calling functions and using variables 181

A User-defined function example

The following simple function takes a principal amount, an annual percentage rate, and a
loan duration in months and returns the total amount of interest to be paid over the
period. You can optionally use the percent sign for the percentage rate, and include the
dollar sign and comma separators for the principal amount.

You could use the TotalInterest function in a cfoutput tag of a form’s action page as
follows:

<cfoutput>
Loan amount: #Form.Principali

Annual percentage rate: #fForm.AnnualPercentfi

Loan duration: #fForm.Months# months

TOTAL INTEREST: #fTotallInterest(Form.Principal, Form.AnnualPercent,
Form.Months)#

</cfoutput>

Defining the function using CFScript

<cfscript>
function Totallnterest(principal, annualPercent, months)
{
Var years = 0;
Var interestRate = 0;
Var totallnterest = 0;
principal = trim(principal);
principal = REReplace(principal,"[\$,]1","","ALL")
annualPercent = Replace(annualPercent,"%","","ALL");
interestRate = annualPercent / 100;
years = months / 12;
totallnterest = principal*(((1+ interestRate)”years)-1);
Return DollarFormat(totallnterest);
}
</cfscript>

Reviewing the code

The following table describes the code:

Code Description

function TotalInterest(principal, annualPercent, Starts the TotalInterest function definition. Requires
months) three variables: the principal amount, the annual

{ percentage rate, and the loan duration in months.

Var years = 0; Declares intermediate variables used in the function and

Var interestRate = 0: initializes them to O. All var statements must precede the

Var totallnterest = 0; rest of the function code.

182 Chapter9 Writing and Calling User-Defined Functions

Code

Description

principal = trim(principal);
principal = REReplace(principal,”[\$,]"."","ALL"): argument. Removes any dollar sign ($) and comma (,)

annualPercent =

Replace(annualPercent,"%","","ALL");

Removes any leading or trailing spaces from the principal

characters from the principal argument to get a numeric
value.

interestRate = annualPercent / 100;

years = months / 12;

Removes any percent (%) character from the
annualPercent argument to get a numeric value, then
divides the percentage value by 100 to get the interest rate.

Converts the loan from months to years.

totallnterest = principal*(((1+ Calculates the total amount of interest due. It is possible to
interestRate)”years)-1);

Return DollarFormat(totalInterest);

}

calculate the value in the Return statement, but this
example uses an intermediate totallnterest variable to
make the code easier to read. Returns the result formatted
as a US currency string.

Ends the function definition.

Defining the function using the cffunction tag

The following code replaces CFScript statements with their equivalent CFML tags.

<cffunction name="TotalInterest">

<cfargument name="principal" required="Yes">
<cfargument name="annualPercent" required="Yes">
<cfargument name="months" required="Yes">

{cfset
{cfset
{cfset
{cfset
{cfset
{cfset
{cfset
{cfset
<{cfset

years = 0>

interestRate = 0>

totallnterest = 0>

principal = trim(principal)>

principal = REReplace(principal,"[\$,1","","ALL")>
annualPercent = Replace(annualPercent,"%","","ALL")>
interestRate = annualPercent / 100>

years = months / 12>

totalInterest = principal*

(((1+ interestRate)”years)-1)>
<cfreturn DollarFormat(totalInterest)>
</cffunction>

A User-defined function example 183

Using UDFs effectively

This section provides information that will help you use user-defined functions more
effectively.

Using Application.cfm and function include files

Consider the following techniques for making your functions available to your

ColdFusion pages:

o Ifyou consistently call a small number of UDFs, consider putting their definitions on
the Application.cfm page.

e Ifyou call UDFs in only a few of your application pages, do not include their
definitions in Application.cfm.

e If you use many UDFs, put their definitions on one or more ColdFusion pages that
contain only UDFs. You can include the UDF definition page in any page that calls
the UDFs.

The next section describes other techniques for making UDFs available to your
ColdFusion pages.

Specifying the scope of a function

User-defined function names are essentially ColdFusion variables. ColdFusion variables
are names for data. Function names are names (references) for segments of CFML code.
Therefore, like variables, functions belong to scopes.

About functions and scopes

Like ColdFusion variables, UDFs exist in a scope:
e When you define a UDE ColdFusion puts it in the Variables scope.
¢ You can assign a UDF to a scope the same way you assign a variable to a scope, by

assigning the function to a name in the new scope. For example, the following line

assigns the MyFunc UDF to the Request scope:
<cfset Request. MyFunc = Variables.MyFunc>

You can now use the function from any page in the Request scope by calling
Request.MyFunc.

184 Chapter9 Writing and Calling User-Defined Functions

Selecting a function scope

The following table describes the advantages and disadvantages of scopes that you might

considering using for your functions:

Scope

Considerations

Application

Request

Server

Session

Makes the function available across all invocations of the application.
Unlike with functions defined in Application.cfm or included from other
ColdFusion pages, all pages use the same in-memory copy of the
function. Using an Application scope function can save memory and
the processing required to define a function multiple times. However,
Application scope functions have the following limitations:

e You must lock the code that puts the function name in the
Application scope, but you do not have to lock code that calls the
function.

e Application scope functions can cause processing bottlenecks
because the server can only execute one copy of the function at a
time. All requests that require the function must wait their turn.

Makes the function available for the life of the current HT TP request,
including in all custom tags and nested custom tags. This scope is
useful if a function is used in a page and in the custom tags it calls, or in
nested custom tags.

Makes the function available to all pages on a single server. In most
cases, this scope is not a good choice because in clustered systems, it
only makes the function available on a single server, and all code that
uses the function must be inside a cflock block.

Makes the function available to all pages during the current user
session. This scope has no significant advantages over the Application
scope.

Using the Request scope

You can effectively manage functions that are used in application pages and custom tags
by doing the following:

1 Define the functions on a function definitions page.

2 On the functions page, assign the functions to the request scope.

3 Use a cfinclude tag to include the function definition page on the application page,
but do not include it on any custom tag pages.

4 Always call the functions using the request scope.

This way you only need to include the functions once per request and they are available
throughout the life of the request. For example, create a myFuncs.cfm page that defines

your functions and assigns them to the Request scope using syntax such as the following:

function MyFuncl(Argumentl, Argument?)
{ Function definition goes here }
Request.MyFuncl = MyFuncl

The application page includes the myFuncs.cfm page:

<cfinclude template="myfuncs.cfm">

Using UDFs effectively 185

The application page and all custom tags (and nested custom tags) call the functions as
follows:

Request.MyFuncl(Valuel, Value?)

Using the Request scope for static variables and constants

This section describes how to partially break the rule described in the section
“Referencing caller variables” on page 180. Here, the function defines variables in the
Request scope. However, it is a specific solution to a specific issue, where the following
circumstances exist:

¢ Your function initializes a large number of variables.

o The variables have either of the following characteristics:

— They must be static: they are used only in the function, the function can change
their values, and their values must persist from one invocation of the function to
the next.

— They are named constants; that is the variable value never changes.

¢ Your application page (and any custom tags) calls the function multiple times.
¢ You can assure that the variable names are used only by the function.

In these circumstances, you can improve efficiency and save processing time by defining
your function’s variables in the Request scope, rather than the Function scope. The
function tests for the Request scope variables and initializes them if they do not exist. In
subsequent calls, the variables exist and the function does not reset them.

The NumberAsString function, written by Ben Forta and available from www.cflib.org,
takes advantage of this technique.

Using function names as function arguments

Because function names are ColdFusion variables, you can pass a function’s name as an
argument to another function. This technique allows a function to use another function
as a component. For example, a calling page can call a calculation function, and pass it
the name of a function that does some subroutine of the overall function.

This way, the calling page could use a single function for different specific calculations,
such as calculating different forms of interest. The initial function provides the
framework, while the function whose name is passed to it can implement a specific
algorithm that is required by the calling page.

The following simple example shows this use. The binop function is a generalized
function that takes the name of a function that performs a specific binary operation and
two operands. The binop function simply calls the specified function and passes it the
operands. This code defines a single operation function, the sum function. A more
complete implementation would define multiple binary operations.

<cfscript>

function binop(operation, operandl, operand?)

{ return (operation(operandl, operand2); }

function sum(addendl, addend?)

{ return addendl + addend?;}

x = binop(sum, 3, 5);

186

Chapter 9 Writing and Calling User-Defined Functions

writeoutput(x);
</cfscript>

Handling query results using UDFs

When you call a UDF in the body of a tag that has a query attribute, such as a cfloop
query=... tag, any function argument that is a query column name passes a single
element of the column, not the entire column. Therefore, the function must manipulate
a single query element.

For example, the following code defines a function to combine a single first name and
last name to make a full name. It queries the CompanylInfo database to get the first and
last names of all employees, then it uses a cfoutput tag to loop through the query and call
the function on each row in the query.

{cfscript>

function FullName(aFirstName, alastName)
{ return aFirstName & " " & alastName; }

</cfscript>

<cfquery name="GetEmployees" datasource="CompanyInfo">
SELECT FirstName, LastName
FROM Employee

</cfquery>

<cfoutput query="GetEmployees">
#FFulTName(FirstName, LastName)#

</cfoutput>

You generally use functions that manipulate many rows of a query outside tags that loop
over queries. Pass the query to the function and loop over it inside the function. For
example, the following function changes text in a query column to uppercase. It takes a
query name as an argument.
function UCaseColumn(myquery, colName)
{
var currentRow = 1;
for (; currentRow 1te myquery.RecordCount;
currentRow = currentRow + 1)
{
myquery[colName][currentRow] =
UCase(myquery[colName][currentRow]);
}
Return
}
The following code uses a script that calls the UCaseColumn function to convert all the
last names in the GetEmployees query to uppercase. It then uses cfoutput to loop over
the query and display the contents of the column.

<cfscript>
UCaseColumn(GetEmployees, "LastName");
</cfscript>
<cfoutput query="GetEmployees">
ffLastNameii

</cfoutput>

Using UDFs effectively 187

Identifying and checking for UDFs

You can use the IsCustomFunction function to determine whether a name represents a
UDE The IsCustomFunction function generates an error if its argument does not exist. As
a result, you must ensure that the name exists before calling the function, for example, by
calling the IsDefined function. The following code shows this use:

{cfscript>
if(IsDefined("MyFunc"))
if(IsCustomFunction(MyFunc))
WriteQutput("MyFunc is a user-defined function");
else
WriteOutput("Myfunc is defined but is NOT a user-defined function");
else
WriteOutput("MyFunc is not defined");
</cfscript>

You do 7ot surround the argument to IsCustomFunction in quotation marks, so you can
use this function to determine if function arguments are themselves functions.

Using the Evaluate function

If your user-defined function uses the Evaluate function on arguments that contain
strings, you must make sure that all variable names you use as arguments include the
scope identifier. Doing so avoids conflicts with function-only variables.

The following example returns the result of evaluating its argument. It produces the
expected results, the value of the argument, if you pass the argument using its fully
scoped name, Variables.myname. However, the function returns the value of the function
local variable if you pass the argument as myname, without the Variables scope identifier.

<cfscript>
myname = "globalName";
function readname(name)
{
var myname = "localName";
return (Evaluate(name));
}
</cfscript>

<cfoutput>
<l--- This one collides with Tocal variable name --->
The result of calling readname with myname is:
fireadname ("myname")3

<l--- This one finds the name passed in --->
The result of calling readname with Variables.myname is:
fireadname("Variables.myname")#
</cfoutput>

188 Chapter9 Writing and Calling User-Defined Functions

Passing complex data

Structures, queries, and complex objects such as COM objects are passed to UDFs by
reference, so the function uses the same copy of the data as the caller. Arrays are passed to
user-defined functions by value, so the function gets a new copy of the array data and the
array in the calling page is unchanged by the function. As a result, you must handle arrays
differently from all other complex data types.

Passing structures, queries, and objects

For your function to modify the caller’s copy of a structure, query, or object, you must
pass the variable as an argument. Because the function gets a reference to the caller’s
structure, the caller variable reflects all changes in the function. You do not have to return
the structure to the caller. After the function, returns, the calling page accesses the
changed data by using the structure variable that it passed to the function.

If you do not want a function to modify the caller’s copy of a structure, query, or object,
use the Duplicate function to make a copy and pass the copy to the function.

Passing arrays

If you want your function to modify the caller’s copy of the array, the simplest solution is
to pass the array to the function and return the changed array to the caller in the function
return statement. In the caller, use same variable name in the function argument and
return variable.

The following example shows how to directly pass and return arrays. In this example, the
doubleOneDArray function doubles the value of each element in a one-dimensional array.

<cfscript>
//Initialize some variables
//This creates a simple array.
a=ArrayNew(1);
all]=2;
al2]=22;
//Define the function.
function doubleOneDArray(OneDArray)
{
var i = 0;
for (i =1; 1 LE arrayLen(OneDArray); i =1 + 1)
{ OneDArray[i] = OneDArray[i] * 2; }
return OneDArray;
}
//Call the function.
a = doubleOneDArray(a);
</cfscript>
<cfdump var="#a#">

This solution is simple, but it is not always optimal:

o This technique requires ColdFusion to copy the entire array twice, once when you
call the function and once when the function returns. This is inefficient for large
arrays and can reduce performance, particularly if the function is called frequently.

¢ You can use the return value of other purposes, such as a status variable.

Using UDFs effectively 189

If you do not use the return statement to return the array to the caller, you can pass the
array as an element in a structure and change the array values inside the structure. Then
the calling page can access the changed data by using the structure variable it passed to

the UDE

The following code shows how to rewrite the previous example using an array in a
structure. It returns True as a status indicator to the calling page and uses the structure to
pass the array data back to the calling page.

<cfscript>
//Initialize some variables.
//This creates an simple array as an element in a structure.
arrayStruct=StructNew();
arrayStruct.Array=ArrayNew(1);
arrayStruct.Array[11=2;
arrayStruct.Array[2]=22;
//Define the function.
function doubleOneDArrayS(OneDArrayStruct)
{
var i = 0;
for (i =1; i LE arraylLen(OneDArrayStruct.Array); i =i + 1)
{ OneDArrayStruct.Array[i] = OneDArrayStruct.Array[i] * 2; }
return True;
}
//Call the function.
Status = doubleOneDArrayS(arrayStruct);
WriteOutput("Status: " & Status);
</cfscript>
</br>
<cfdump var="ffarrayStructs#">

You must use the same structure element name for the array (in this case Array) in the
calling page and the function.

Using recursion

A recursive function is a function that calls itself. Recursive functions are useful when a
problem can be solved by an algorithm that repeats the same operation multiple times
using the results of the preceding repetition. Factorial calculation, used in the following
example, is one case where recursion is useful. The Towers of Hanoi game is also solved
using a recursive algorithm.

A recursive function, like looping code, must have an end condition that always stops the
function. Otherwise, the function will continue until a system error occurs or you stop
the ColdFusion Server.

The following example calculates the factorial of a number, that is, the product of all the
integers from 1 through the number; for example, 4 factorial is 4 X3 X2 X 1 = 24.

function Factorial(factor)
{
If (factor LTE 1)
return 1;
else
return factor * Factorial(factor -1);

190 Chapter9 Writing and Calling User-Defined Functions

If the function is called with a number greater than 1, it calls itself using an argument one
less than it received. It multiplies that result by the original argument, and returns the
result. Therefore, the function keeps calling itself until the factor is reduced to 1. The
final recursive call returns 1, and the preceding call returns 2 * 1, and so on until all the
initial call returns the end result.

Caution: If arecursive function calls itself too many times, it causes a stack overflow.
Always test any recursive functions under conditions that are likely to cause the maximum
number of recursions to ensure that they do not cause a stack overflow.

Handling errors in UDFs

This section discusses the following topics:

¢ Displaying error messages directly in the function

¢ Returning function status information to the calling page

e Using try/catch or cftry/cfcatch blocks and the cfthrow and cfrethrow tags to
handle and generate exceptions

The technique you use depends on the circumstances of your function and application
and on your preferred programming style. However, most functions should use the
second or third technique, or a combination of the two. The following sections discuss
the uses, advantages, and disadvantages of each technique, and provides examples of their
use.

Displaying error messages

Your function can test for errors and use the WriteOutput function to display an error
message directly to the user. This method is particularly useful for providing immediate
feedback to users for simple input errors. You can use it independently or in conjunction
with either of the other two error-handling methods.

For example, the following variation on a "Hello world" function displays an error
message if you do not enter a name in the form:

<cfform method="POST" action="#CGI.script_nameff">
<p>Enter your Name:
<input name="name" type="text" hspace="30" maxlength="30">
<input type="Submit" name="submit" value="O0K">
</cfform>
{cfscript>
function HelloFriend(Name)
{
if (Name is "") WriteOutput("You forgot your name!");
else WriteOutput("Hello " & name &"!");
return "";
}
if (IsDefined("Form.submit")) HelloFriend(Form.name);
</cfscript>

Using UDFs effectively 191

Reviewing the code

The following table describes the code:

Code

Description

<cfform method="POST" action="#fCGI.script_namef">
<p>Enter your Name:
<input name="name" type="text" hspace="30"
maxlength="30">
<input type="Submit" name="submit" value="0K">
</cfform>

<cfscript>
function HelloFriend(Name)
{
if (Name is "") WriteOutput("You forgot your
name!");
else WriteQutput("Hello " & name &"!");
return "";
}
if (IsDefined("Form.submit"))
HelloFriend(Form.name);
</cfscript>

Creates a simple form requesting you to enter your name.

Uses the script_name CGl variable to post to this page
without specifying a URL.

If you do not enter a name, the form posts an empty string as
the name field.

Defines a function to display "Hello name!" First, checks
whether the argument is an empty string. If so, displays an
error message.

Otherwise displays the hello message.

Returns the empty string. (The caller does not use the return
value). It is not necessary to use curly braces around the if or
else statement bodies because they are single statements.

If this page has been called by submitting the form, calls the
HelloFriend function. Otherwise, the page just displays the
form.

Providing status information

In some cases, such as those where the function cannot provide a corrective action, the
function cannot, or should not, handle the error directly. In these cases, your function
can return information to the calling page. The calling page must handle the error

information and act appropriately.

Consider the following mechanisms for providing status information:

o Use the return value to indicate the function status only. The return value can be a

Boolean success/failure indicator. The return value can also be a status code, for
example where 1 indicates success, and various failure types are assigned known
numbers. With this method, the function must set a variable in the caller to the value

of a successful result.

e Set a status variable that is available to the caller (not the return variable) to indicate
success or failure and any information about the failure. With this method, the
function can return the result directly to the caller. In this method, the function
should use only the return value and structure arguments to pass the status back to

the caller.

Each of these methods can have variants, and each has advantages and disadvantages.
Which technique you use should depend on the type of function, the application in
which you use it, and your coding style.

192 Chapter9 Writing and Calling User-Defined Functions

The following example, which modifies the function used in “A User-defined function
example” on page 182, uses one version of the status variable method. It provides two
forms of error information:

e It returns -1, instead of an interest value, if it encounters an error. This value can serve
as an error indicator because you never pay negative interest on a loan.

o It also writes an error message to a structure that contains an error description
variable. Because the message is in a structure, it is available to both the calling page
and the function.

The Totallnterest function

After changes to handle errors, the TotalInterest function looks like the following. Code
that is changed from the example in “A User-defined function example” on page 182 is in

bold.

{cfscript>
function TotalInterest(principal, annualPercent, months, status)
{
Var years = 0;
Var interestRate = 0;
Var totallnterest = 0;
principal = trim(principal);
principal = REReplace(principal,"[\$,]","","ALL")
annualPercent = Replace(annualPercent,"%","","ALL");
if ((principal LE 0) OR (annualPercent LE 0) OR (months LE 0))
{
Status.errorMsg = "Al11 values must be greater than 0";
Return -1;
}
interestRate = annualPercent / 100;
years = months / 12;
totallnterest = principal*(((1+ interestRate)*years)-1);
Return DollarFormat(totallnterest);
}
</cfscript>

Using UDFs effectively 193

Reviewing the code

The following table describes the code that has been changed or added to the previous
version of this example. For a description of the initial code, see “A User-defined function
example” on page 182.

Code Description
function TotalInterest(principal, The function now takes an additional argument, a
annualPercent, months, status) status structure. Uses a structure for the status

variable so that changes that the function makes
affect the status structure in the caller.

if ((principal LE 0) OR Checks to make sure the principal, percent rate, and

(annualPercent LE 0) OR duration are all greater than zero.
(months LE 0)) .)
{ If any is not, sets the errorMsg key (the only key) in the

Status.errorMsg = "A11 values Status structure to a descriptive string. Also, returns
must be greater than 0"; -1to the caller and exits the function without
Return -1; processing further.

Calling the function

The code that calls the function now looks like the following. Code that is changed from
the example in “A User-defined function example” on page 182 is in bold.

<cfset status = StructNew()>
<cfset myInterest = TotalInterest(Form.Principal,
Form.AnnualPercent,Form.Months, status)>
<cfif myInterest EQ -1>
<cfoutput>
ERROR: ftstatus.errorMsgii

</cfoutput>
<cfelse>
<cfoutput>
Loan amount: #Form.Principali#

Annual percentage rate:
JForm. AnnualPercentf

Loan duration: #fForm.Months# months

TOTAL INTEREST: fmyInteresti

</cfoutput>
</cfif>

Reviewing the code

The following table describes the code that has been changed or added:

Code Description
{cfset status = StructNew()> Creates a structure to hold the function
status.
<cfset mylnterest = Totallnterest Calls the function. This time, the function
(Form.Principal, Form.AnnualPercent, requires four arguments, including the

Form.Months, status)> status variable.

194

Chapter 9 Writing and Calling User-Defined Functions

Code Description

<cfif myInterest EQ -1> If the function returns -1, there must be an
<cfoutput> error. Displays the message that the
ERROR: fstatus.errorMsgf
 function placed in the status.errorMsg
</cfoutput>
structure key.
{cfelse> If the function does not return -1, it returns
<cfoutput> an interest value. Displays the input values

Loan amount: #fForm.Principalf

Annual percentage rate:
#iForm. AnnualPercentiKbr>
Loan duration: ffForm.Monthsff months

TOTAL INTEREST: fmyInterstibr>
</cfoutput>
</cfif>

and the function return value.

Using exceptions

UDFs written in CFScript can handle exceptions using the try and catch statements.
UDFs written using the cffunction tag can use the cftry, cfcatch, cfthrow and cfrethrow
tags. Using exceptions corresponds to the way many functions in other programming
languages handle errors, and can be an effective way to handle errors. In particular, it
separates the functional code from the error-handling code, and it can be more efficient
than other methods at runtime, because it does not require testing and branching.

Exceptions in UDFs have the following two dimensions:

¢ Handling exceptions generated by running the UDF code

o Generating exceptions when the UDF identifies invalid data or other conditions that
would cause errors if processing continued.

Handling exceptions in UDFs

A UDF should use try/catch blocks to handle exceptions in the same conditions that any
other ColdFusion application uses try/catch blocks. These are typically circumstances
where the function uses an external resource, such as a Java, COM, or CORBA object, a
database, or a file. When possible, your application should prevent, rather than catch,
exceptions caused by invalid application data. For example, the application should
prevent users from entering a zero value for a form field that is used to divide another
number, rather than handling exceptions generated by dividing by zero.

When ColdFusion catches an exception, the function can use any of the following

methods to handle the exception:

o If the error is recoverable (for example, if the problem is a database timeout where a
retry might resolve the issue), try to recover from the problem.

¢ Display a message, as described in “Displaying error messages” on page 191.

e Return an error status, as described in “Providing status information” on page 192.

o If the UDF is defined using the cffunction tag, throw a custom exception, or rethrow
the exception so that it will be caught by the calling ColdFusion page. For more
information on throwing and rethrowing exceptions, see “Handling runtime
exceptions with ColdFusion tags,” in Chapter 14.

Using UDFs effectively 195

Generating exceptions in UDFs

If you define your function using the cffunction tag, you can use the cfthrow and
cfrethrow tags to throw errors to the page that called the function. You can use this
technique whenever your UDF identifies an error, instead of displaying a message or
returning an error status. For example, the following code rewrites the example from
“Providing status information” on page 192 to use the cffunction tag and CFML, and to
throw and handle an exception if any of the form values are not positive numbers.

The lines that identify invalid data and throw the exception are in bold. The remaining
lines are equivalent to the CFScript code in the previous example. However, the code that
removes unwanted characters must precede the error checking code.

<cffunction name="TotalInterest">
<cfargument name="principal" required="Yes">
<cfargument name="annualPercent" required="Yes">
<cfargument name="months" required="Yes">
<cfset principal = trim(principal)>
<cfset principal = REReplace(principal,"[\$,1","","ALL")>
<cfset annualPercent = Replace(annualPercent,"%","","ALL")>

<cfif ((principal LE 0) OR (annualPercent LE 0) OR (months LE 0))>
<cfthrow type="InvalidData" message="Al1 values must be greater
than 0.">
</cfif>

{cfset years = 0>

{cfset interestRate = 0>

{cfset totallnterest = 0>

<{cfset interestRate = annualPercent / 100>

<{cfset years = months / 12>

<cfset totallnterest = principal*

(((1+ interestRate)”years)-1)>

<cfreturn DollarFormat(totallnterest)>

</cffunction>

The code that calls the function and handles the exception looks like the following. The
changed lines are in bold.

<cftry>
<cfset status = StructNew()>
{cfset myInterest = Totallnterest(Form.Principal, Form.AnnualPercent,
Form.Months, status)>
<cfoutput>
Loan amount: #Form.Principali

Annual percentage rate: ffForm.AnnualPercentfi

Loan duration: #fForm.Months# months

TOTAL INTEREST: ffmyInteresti

</cfoutput>
<cfcatch type="InvalidData">
<cfoutput>
ffcfcatch.message#

</cfoutput>
</cfcatch>
</cftry>

196 Chapter9 Writing and Calling User-Defined Functions

CHAPTER 10
Creating and Using Custom CFML

Tags

This chapter describes how to create and use custom CFML tags that encapsulate
common code.

Contents

o Creating CUSTOIM TAZS ..euveuviuiiuiiiiiuiitiireiie ittt sas sttt ss e sassnesas e snes 198
o Dassing data t0 CUSTOM TAZS ..cveurrveurreeiirtiirieieietee ettt et eeese e nens 202
¢ Managing CUSTOM TAZS ...veeviiuiiiuiiuiiitiiie ittt sae e sae e erens 207
o EXECULING CUSTOM TAZS .evvviiiiiiiiiiitiiie ittt s 208
® NEStiNG CUSTOM TAZS....viiuiiuiiiiiiiiiiiiitiiie ettt aesae s 212

197

Creating custom tags

Custom tags let you extend CFML by adding your own tags to the ones supplied with
ColdFusion. After you define a custom tag, you can use it on a ColdFusion page just as
you would any of the standard CFML tags, such as cfquery and cfoutput.

You use custom tags to encapsulate your application logic so that it can be referenced
from any ColdFusion page. Custom tags allow for rapid application development and
code reuse while offering off-the-shelf solutions for many programming chores.

For example, you might create a custom tag, named cf_happybirthday, to generate a
birthday message. You could then use that tag in a ColdFusion page, as follows:

<cf_happybirthday name="Ted Cantor" birthDate="December 5, 1987">
When ColdFusion processes the page containing this tag, it could output the message:

December 5, 1987 is Ted Cantor’s Birthday.
Please wish him well.

A custom tag can also have a body and end tag, for example:

<cf_happybirthdayMessge name="Ellen Smith" birthDate="dune 8, 1993">
<P> Happy Birthday E1len!</P>
<P> May you have many more!</P>

</cf_happybirthdayMessge>

This tag could output the message:

June 8, 1993 is Ellen Smith’s Birthday.
Happy Birthday Ellen!
May you have many more!

For more information about using end tags, see “Handling end tags” on page 208.

Creating and calling custom tags

You implement a custom tag with a single ColdFusion page. You then call the custom tag
from a ColdFusion page by inserting the prefix cf_ before the page’s file name. The page
referencing the custom tag is referred to as the calling page.

To create and call a custom tag:
1 Create a ColdFusion page, the custom tag page, that shows the current date:
<cfoutput>ffDateFormat(Now())#</cfoutput>

2 Save the file as date.cfm.

3 Create a ColdFusion page, the calling page, with the following content:

<html>
<head>
<title>Date Custom Tag</title>
</head>
<body>

<!--- Call the custom tag defined in date.cfm --->
<cf_date>

</body>
</html>

198

Chapter10 Creating and Using Custom CFML Tags

4 Save the file as callingdate.cfm.

5 View callingdate.cfm in your browser.

This custom tag returns the current date in the format DD-MMM-YY.
As you can see from this example, creating a custom tag in CEML is no different from
writing any ColdFusion page. You can use all CEML constructs, as well as HTML. You
are free to use any naming convention that fits your development practice. Unique
descriptive names make it easy for you and others to find the right tag.

Note: Althoughtag namesin ColdFusion pages are case-insensitive, custom tag filenames
must be lowercase on UNIX.

Storing custom tag pages

You must store custom tag pages in any one of the following:

o The same directory as the calling page

o The cfusion\CustomTags directory

e A subdirectory of the cfusion\CustomTags directory

e A directory that you specify in the ColdFusion Administrator

To share a custom tag among applications in multiple directories, place it in the
cfusion\CustomTags directory. You can create subdirectories to organize custom tags.
ColdFusion searches recursively for the Custom Tags directory, stepping down through
any existing subdirectories until the custom tag is found.

You might have a situation where you have multiple custom tags with the same name. To
guarantee which tag ColdFusion calls, copy it to the same directory as the calling page.
Or, use the cfmodule tag with the template attribute to specify the absolute path to the
custom tag. For more information on cfmodule, see the next section.

Calling custom tags using the cfmodule tag

You can also use the cfmodule tag to call custom tags if you want to specify the location of
the custom tag page. The cfimodule tag is useful if you are concerned about possible name
conflicts when invoking a custom tag, or if the application must use a variable to
dynamically call a custom tag at runtime.

Creating customtags 199

You must use either a template or name attribute in the tag, but you cannot use both. The
following table describes the basic cfmodule attributes:

Attribute Description

template Required if the name attribute is not used. Same as the template attribute in
cfinclude. This attribute:

e Specifies a path relative to the directory of the calling page.
e [fthe path value is prefixed with "/", ColdFusion searches directories explicitly
mapped in the ColdFusion Administrator for the included file.

Example: <cfmodule template="../MyTag.cfm">identifies a custom tag file in
the parent directory.

name Required if the template attribute is not used. Use period-separated names to
uniquely identify a subdirectory under the CustomTags root directory.

Example: <cfmodule name="MyApp.GetUserOptions"> identifies the file
GetUserOptions.cfmin the CustomTags\MyApp directory under the ColdFusion
root directory.

attributes The custom tag's attributes.

For example, the following code specifies to execute the custom tag defined by the
mytag.cfm page in the parent directory of the calling page:

<cfmodule template="../mytag.cfm">

For more information on using the cfmodule tag, see CEML Reference.

Calling custom tags using the cfimport tag
You can use the cfimport tag to import custom tags from a directory as a tag library. The
following example imports the tags from the directory myCustomTags:
<cfimport prefix="mytags" taglib="myCustomTags">
Once imported, you call the custom tags using the prefix that you set when importing, as
the following example shows:
<mytags:customlTagName>

where customTagName corresponds to a ColdFusion application page named
customTagName.cfm. If the tag takes attributes, you include them in the call:

<mytags:custom_tag_name attributel=val_1l attribute?=val_2>

You can also include end tags when calling your custom tags, as the following example
shows:

<mytags:custom_tag_name attributel=val_1l attribute?=val_2>

</mytags:custom_tag_name>

ColdFusion calls the custom tag page twice for a tag that includes an end tag: once for
the start tag and once for the end tag. For more information on how ColdFusion handles
end tags, and how to write your custom tags to handle them, see “Handling end tags” on
page 208.

200 Chapter10 Creating and Using Custom CFML Tags

One of the advantages to using the cfimport tag is that you can define a directory
structure for your custom tags to organize them by category. For example, you can put all
security tags in one directory, and all interface tags in another. You then import the tags
from each directory and give them a different prefix:

<cfimport prefix="security" taglib="securityTags">
<cfimport prefix="ui" taglib="uiTags">

<{security:validateUser name="Bob">

<ui:greeting name="Bob">

Reading your code becomes easier because you can identify the location of your custom
tags from the prefix.

Securing custom tags

The ColdFusion security framework enables you to selectively restrict access to individual
tag files and tag directories. This can be an important safeguard in team development.
For details, see Administering ColdFusion MX.

Accessing existing custom tags

Before creating a custom tag in CFML, you should review the Custom Tag section of the
ColdFusion Developer Exchange at http://devex.macromedia.com/developer/gallery/
index.cfm. You might find a tag here that does what you want.

Tags are grouped in several broad categories and are downloadable as freeware, shareware,
or commercial software. You can view each tag’s syntax and usage information. The
gallery contains a wealth of background information on custom tags and an online
discussion forum for tag topics.

Tag names with the cf_ preface are CFML custom tags; those with the cfx_ preface are
ColdFusion extensions written in C++. For more information about the CFX tags, see

Chapter 12, “Building Custom CFXAPI Tags” on page 243.

If you do not find a tag that meets your specific needs, you can create your own custom
tags in CFML.

Creating customtags 201

Passing data to custom tags

To make your custom tags flexible, you will often want to pass data to them for
processing. This section describes how to write custom tags that take tag attributes and
other data as input from a calling page.

Passing values to and from custom tags

Because custom tags are individual ColdFusion pages, variables and other data are not
automatically shared between a custom tag and the calling page. To pass data from the
calling page to the custom tag, you can specify attribute name/value pairs in the custom
tag, just as you do for normal HTML and CFML tags.

For example, to pass the value of the NameYouEntered variable to the cf_getmd tag, you
can call the custom tag as follows:

<cf_getmd Name={iNameYouEnteredif>

To pass multiple attributes to a custom tag, separate them with a space in the tag as
follows:

<cf_mytag Firstname="Thadeus" Lastname="Jones">

In the custom tag, you use the Attributes scope to access attributes passed to the tag.
Therefore, in the getmd.cfm page, you refer to the passed attribute as Attributes.Name.
The mytag.cfm custom tag page refers to the passed attributes as Attributes.Firstname
and Attributes.Lastnanme.

The custom tag page can also access variables set in the calling page by prefixing the
calling page’s local variable with Caller. However, this is not the best way to pass
information to a custom tag, because each calling page would be required to create
variables with the names required by the custom tag. You can create more flexible custom
tags by passing parameters using attributes.

Variables created within a custom tag are deleted when the processing of the tag
terminates. Therefore, if you want to pass information back to the calling page, you must
write that information back to the Caller scope of the calling page. You cannot access the
custom tag’s variables outside the custom tag itself.

For example, use the following code in the getmd.cfm page to set the variable Doctor on
the calling page:
<cfset Caller.Doctor="Doctor " & Attributes.Name>

If the variable Doctor does not exist in the calling page, this statement creates it. If the
variable exists, the custom tag overwrites it.

202 Chapter10 Creating and Using Custom CFML Tags

The following figure shows the relationship between the variables on the calling page and
the custom tag;

<cfset NameYouEntered="Smith">

<cf_getmd Name=#NameYouEntereds#> <cfset Caller.Doctor="Doctor " & Attributes.Name>
<cfoutput>
You are now #Variables.Doctor#.

</cfoutput>

calling page getmd.cfm

One common technique used by custom tags is for the custom tag to take as input an
attribute containing the name of the variable to use to pass back results. For example, the
calling page passes returnHere as the name of the variable to use to pass back results:
<cf_mytag resultName="returnHere">

In mytag.cfm, the custom tag passes back its results using the following code:

<cfset "Caller.#Attributes.resultName#" = result>

Tip: Be careful not to overwrite variables in the calling page from the custom tag. You
should adopt a naming convention to minimize the chance of overwriting variables. For
example, prefix the returned variable with customtagname_, where customtagname is the
name of the custom tag.

Note: Data pertaining to the HTTP request or to the current application is visible in the
custom tag page. This includes the variables in the Form, Url, Cgi, Request, Cookies, Server,
Application, Session, and Client scopes.

Using tag attributes summary

Custom tag attribute values are passed from the calling page to the custom tag page as

name-value pairs. CFML custom tags support required and optional attributes. Custom

tag attributes conform to the following CEML coding standards:

o ColdFusion passes any attributes in the Attributes scope.

o Use the Attributes.attribute_name syntax when referring to passed attributes to
distinguish them from custom tag page local variables.

o Actributes are case-insensitive.

o Attributes can be listed in any order within a tag.

o Actribute name-value pairs for a tag must be separated by a space in the tag
invocation.

o Dassed values that contain spaces must be enclosed in double-quotes.

o Use the cfparam tag with a default attribute at the top of a custom tag to test for and
assign defaults for optional attributes that are passed from a calling page. For

example:
<!--- The value of the variable Attributes.Name comes from the calling page. If
the calling page does not set it, make it “Who". --->

<cfparam name="Attributes.Name" default="Who">

Passing data to customtags 203

o Use the cfparamtag or a cfif tag with an IsDefined function at the top of a custom
tag to test for required attributes that must be passed from a calling page; for
example, the following code issues an abort if the user does not specify the Name
attribute to the custom tag:

{cfif not IsDefined("Attributes.Name")>

<{cfabort showError="The Name attribute is required.">
<Jcfif>

Custom tag example with attributes
The example in this section creates a custom tag that uses an attribute that is passed to it

to set the value of a variable called Doctor on the calling page.

To create a custom tag:

1 Create a new ColdFusion page (the calling page) with the following content:

<html>
<head>
<title>Enter Name</title>
<{/head>
<body>
<!--- Enter a name, which could also be done in a form --->
<l--- This example simply uses a cfset --->

<{cfset NameYouEntered="Smith">

<l--- Display the current name --->

<cfoutput>

Before you leave this page, you're #Variables.NameYouEnteredi.

</cfoutput>

<!--- go to the custom tag --->
<cf_getmd Name="#NameYouEntered#">
<!--- Come back from the Custom tag --->

<I--- display the results of the custom tag --->
<cfoutput>

You are now #Variables.Doctorif.

</cfoutput>

</body>

</html>

2 Save the page as callingpage.cfm.

3 Create another new page (the custom tag) with the following content:
<!--- The value of the variable Attributes.Name comes from the calling page. If
the calling page does not set it, make it “Who". --->
<cfparam name="Attributes.Name" default="Who">

<l--- Create a variable called Doctor, make its value "Doctor "
followed by the value of the variable Attributes.Name.
Make its scope Caller so it is passed back to the calling page
>
<{cfset Caller.Doctor="Doctor " & Attributes.Name>

4 Save the page as getmd.cfm.

204 Chapter10 Creating and Using Custom CFML Tags

5 Open the file callingpage.cfmin your browser.

The calling page uses the getmd custom tag and displays the results.

Reviewing the code

The following table describes the code and its function:

Code Description

{cfset NameYouEntered="Smith"> In the calling page, create a variable NameYouEntered
and assign it the value "Smith."

<cfoutput> In the calling page, display the value of the

Before you leave this page, you're NameYouEntered variable before calling the custom
ffvariables.NameYouEnteredi.
 tag

</cfoutput>

<cf_getmd Name="{NameYouEntered#"> |n the calling page, call the getmd custom tag and pass
it the Name attribute whose value is the value of the local
variable NameYouEntered.

<cfparam name="Attributes.Name" The custom tag page normally gets the Name variable in
default="Who"> the Attributes scope from the calling page. Assign it the
value "Who" if the calling page did not pass an attribute.

<cfset Caller.Doctor="Doctor " & Inthe custom tag page, create a variable called Doctor
Attributes.Name> in the Caller scope so it will exist in the calling page as a
local variable.

Set its value to the concatenation of the string "Doctor”
and the value of the Atributes.Name variable.

<cfoutput> In the calling page, display the value of the Doctor

You are now #Variables.Doctor#.
 yariable returned by the custom tag page. (This example

</cfoutput> uses the Variables scope prefix to emphasize the fact
that the variable is returned as a local variable.)

Passing custom tag attributes using CFML structures

You can use the reserved attribute attributecollection to pass attributes to custom tags
using a structure. The attributecollection attribute must reference a structure
containing the attribute names as the keys and the attribute values as the values. You can
freely mix attributecollection with other attributes when you call a custom tag.

The key-value pairs in the structure specified by the attributecollection attribute get
copied into the custom tag page’s Attributes scope. This has the same effect as specifying
the attributecollection entries as individual attributes when you call the custom tag.
The custom tag page refers to the attributes passed using attributecollection the same
way as it does other attributes; for example, as Attributes.CustomerName or
Attributes.Department_number.

Note: You can use both tag attributes and attributecollections. If you pass an attribute

with the same name using both methods, ColdFusion passes only the tag attribute to the
custom tag and ignores the corresponding attribute from the attribute collection.

Passing data to customtags 205

Custom tag processing reserves the attributecollection attribute to refer to the structure
holding a collection of custom tag attributes. If attributecollection does not refer to
such a collection, ColdFusion generates a template exception.

The following example uses an attributecollection attribute to pass two of four
attributes:

<cfset zort=StructNew()>

<{cfset zort.x = "-X-">

{cfset zort.y = "-Y-">

<cf_testtwo a="blab" attributecollection=ffzort# foo="16">

If testtwo.cfm contains the following code:

---custom tag ---

<{cfoutput>ffattributes.a# #attributes.xf #attributes.ys
flattributes. foof</cfoutput>

--- end custom tag ---

its output is the following statement:

---custom tag ---

blab -X- -Y- 16

--- end custom tag ---

One use for attributecollection is to pass the entire Attributes scope of one custom tag
to another. This often happens when you have one custom tag that calls a second custom
tag and you want to pass all attributes from the first tag to the second.

For example, you call a custom tag with the following code:

{cf_first attrl="foo" attr2="bar">

To pass all the attributes of the first custom tag to the second, you include the following
statement in first.cfm:

<cf_second attributecollection="ffattributes#">

Within the body of second.cfm, you reference the parameters passed to it as follows:

<cfoutput>ffattributes.attrlf</cfoutput>
<cfoutput>ffattributes.attr2f</cfoutput>

206 Chapter10 Creating and Using Custom CFML Tags

Managing custom tags

If you deploy custom tags in a multideveloper environment or distribute your tags
publicly, you can use the following additional ColdFusion capabilities:
e Advanced security

e Template encoding

Securing custom tags

The ColdFusion security framework enables you to selectively restrict access to individual
tags or to tag directories. This can be an important safeguard in team development. For
more information, see Chapter 16, “Securing Applications” on page 347.

Encoding custom tags

You can use the command-line utility cfencode to encode any ColdFusion application
page. By default, the utility is installed in the ¢f roo#/bin directory. It is especially useful
for securing custom tag code before distributing it.

The cfencode tag uses the following syntax:

cfencode 7nfile outfile [/r /q] [/h "message"] /v"2"

The following table describes the options:

Option

Description

infile

outfile

/r

/a
/h
N

The file you want to encode. The cfencode tag does not process an encoded file.

Path and filename of the output file.

Warning: If you do not specify an output filename, a warning message asks if you
want to continue, and the encoded file will overwrite the source file.

Recursive, when used with wildcards, recurses through subdirectories to encode
files.

Suppresses warning messages.
Header, allows custom header to be written to the top of the encoded file(s).

Required parameter that allows encoding using a specified version number. Use
"1" for pages you want to run on ColdFusion 3.x. Use "2" for pages you want to
run strictly on ColdFusion 4.0 and later.

Note: Although itis possible to encode binary files with cfencode, it is not recommended.

Managing custom tags 207

Executing custom tags

The following sections provide information about executing custom tags, including
information about handling end tags and processing body text.

Accessing tag instance data

When a custom tag page executes, ColdFusion keeps data related to the tag instance in
the thisTag structure. You can access the thisTag structure from within your custom tag
to control processing of the tag. The behavior is similar to the File tag-specific variable
(sometimes called the File scope).

ColdFusion generates the variables in the following table and writes them to the thisTag

structure:
Variable Description
ExecutionMode Contains the execution mode of the custom tag. Valid values are
"start", "end", and "inactive".
HasEndTag Distinguishes between custom tags that are called with and without

end tags. Used for code validation. If the user specifies an end tag,
HasEndTag is set to True; otherwise, it is set to False.

GeneratedContent The content that has been generated by the tag. This includes
anything in the body of the tag, including the results of any active
content, such as ColdFusion variables and functions. You can
process this content as a variable.

AssocAttribs Contains the attributes of all nested tags if you use cfassociate to
make them available to the parent tags. For more information, see
“High-level data exchange” on page 213.

The following example accesses the ExecutionMode variable of the thisTag structure from
within a custom tag;

<cfif thisTag.ExecutionMode is 'start'>

Handling end tags

The examples of custom tags shown so far in this chapter all reference a custom tag using
just a start tag, as in:

<cf_date>
In this case, ColdFusion calls the custom tag page date.cfm to process the tag.

However, you can create custom tags that have both a start and an end tag. For example,
the following tag has both a start and an end tag:

{cf_date>
{/cf_date>
ColdFusion calls the custom tag page date.cfm twice for a tag that includes an end tag:

once for the start tag and once for the end tag. As part of the date.cfm page, you can
determine if the call is for the start or end tag, and perform the appropriate processing.

208 Chapter10 Creating and Using Custom CFML Tags

ColdFusion will also call the custom tag page twice if you use the shorthand form of an
end tag:

{cf_date/>
You can also call a custom tag using the cfmodule tag, as shown in the following example:
<cfmodule ...>

</cfmodule>

If you specify an end tag to cfmodule, then ColdFusion calls your custom tag as if it had
both a start and an end tag.

Determining if an end tag is specified

You can write a custom tag that requires users to include an end tag. If a tag must have an
end tag provided, you can use thisTag.HasEndTag in the custom tag page to verify that the
user included the end tag.

For example, in date.cfm, you could include the following code to determine whether the
end tag is specified:
<cfif thisTag.HasEndTag is 'False'>

<l--- Abort the tag--->

<cfabort showError="An end tag is required.">
</cfif>

Determining the tag execution mode

The variable thisTag.ExecutionMode contains the mode of invocation of a custom tag

page. The variable has one of the following values:

e Start Mode for processing the start tag.

e End Mode for processing the end tag.

e Inactive Mode when the custom tag uses nested tags. For more information, see
“Nesting custom tags” on page 212.

If an end tag is not explicitly provided, ColdFusion invokes the custom tag page only
once, in Start mode.

A custom tag page named bold.cfm that bolds text could be written as follows:

<cfif thisTag.ExecutionMode is 'start'>
<!--- Start tag processing --->

<{cfelse>
<!--- End tag processing --->

<Jefif>

You then use this tag to convert text to bold:
<cf_bold>This is bolded text</cf_bold>
You can also use cfswitch to determine the execution mode of a custom tag:

<{cfswitch expression=ffthisTag.ExecutionModei>
<{cfcase value= 'start'>
<l--- Start tag processing --->
<{/cfcase>

Executing custom tags 209

<{cfcase value='end'>
<!--- End tag processing --->
</cfcase>
</cfswitch>

Considerations when using end tags

How you code your custom tag to divide processing between the start tag and end tag is

greatly dependent on the function of the tag. However, you can use the following rules to

help you make your decisions:

o Use the start tag to validate input attributes, set default values, and validate the
presence of the end tag if it is required by the custom tag.

o Use the end tag to perform the actual processing of the tag, including any body text
passed to the tag between the start and end tags. For more information on body text,
see “Processing body text” on page 210.

e Perform output in either the start or end tag; do not divide it between the two tags.

Processing body text

Body text is any text that you include between the start and end tags when you call a
custom tag; for example:
<cf_happybirthdayMessge name="Ellen Smith" birthDate="June, 8, 1993">

<P> Happy Birthday Ellen!</P>

<P> May you have many more!</P>
</cf_happybirthdayMessge>

In this example, the two lines of code after the start tag are the body text.

You can access the body text within the custom tag using the thisTag.GeneratedContent
variable. The variable contains all body text passed to the tag. You can modify this text
during processing of the tag. The contents of the thisTag.GeneratedContent variable are
returned to the browser as part of the tag’s output.

The thisTag.GeneratedContent variable is always empty during the processing of a start
tag. Any output generated during start tag processing is not considered part of the tag’s
generated content.

A custom tag can access and modify the generated content of any of its instances using
the thisTag.GeneratedContent variable. In this context, the term generated content
means the results of processing the body of a custom tag. This includes all text and
HTML code in the body, the results of evaluating ColdFusion variables, expressions, and
functions, and the results generated by descendant tags. Any changes to the value of this
variable result in changes to the generated content.

As an example, consider a tag that comments out the HTML generated by its
descendants. Its implementation could look like this:

<cfif thisTag.ExecutionMode is 'end'>
{cfset thisTag.GeneratedContent ='<!--#thisTag.GeneratedContenti-->'>
</cfif>

210 Chapter10 Creating and Using Custom CFML Tags

Terminating tag execution

Within a custom tag, you typically perform error checking and parameter validation. As
part of those checks, you can choose to abort the tag, using cfabort, if a required
actribute is not specified or other severe error is detected.

The cfexit tag also terminates execution of a custom tag. However, the cfexit tag is
designed to give you more flexibility when coding custom tags than cfabort. The cfexit
tag’s method attribute specifies where execution continues. The cfexit tag can specify that
processing continues from the first child of the tag or continues immediately after the
end tag marker.

You can also use the method attribute to specify that the tag body executes again. This
enables custom tags to act as high-level iterators, emulating cf1oop behavior.

The following table summarizes cfexit behavior:

Method attribute value Location of cfexit call Behavior

ExitTag (default) Base page Acts like cfabort
ExecutionMode=start Continue after end tag
ExecutionMode=end Continue after end tag

ExitTemplate Base page Acts like cfabort
ExecutionMode-=start Continue from first child in body
ExecutionMode=end Continue after end tag

Loop Base page Error
ExecutionMode=start Error
ExecutionMode=end Continue from first child in body

Executing custom tags 21

Nesting custom tags

A custom tag can call other custom tags from within it’s body text, thereby nesting tags.
ColdFusion uses nested tags such as cfgraph and cfgraphdata, cfhttp and cfhttppam, and
cftree and cftreeitem The ability to nest tags allows you to provide similar
functionality.

The following example shows a cftreeitem tag nested within a cftree tag:

<{cftree name="treel"
required="Yes"
hscrol1="No">
<cftreeitem value=fullname
query="engquery"
queryasroot="Yes"
img="folder,document">
</cftree>

The calling tag is known as an ancestor, parent, or base tag, while the tags that ancestor
tags call are known as descendant, child, or sub tags. Together, the ancestor and all
descendant tags are called collaborating tags.

In order to nest tags, the parent tag must have a closing tag.

The following table lists the terms that describe the relationships between nested tags:

Tag nested within
Calling tag the calling tag Description

Ancestor Descendant An ancestor is any tag that contains other tags between
its start and end tags. A descendant is any tag called by
atag.

Parent Child Parent and child are synonyms for ancestor and
descendant.

Base tag Sub tag A base tag is an ancestor that you explicitly associate

with a descendant, called a sub tag, with cfassociate.

You can create multiple levels of nested tags. In this case, the sub tag becomes the base tag

for its own sub tags. Any tag with an end tag present can be an ancestor to another tag.

Nested custom tags operate through three modes of processing, which are exposed to the

base tags through the variable thisTag.ExecutionMode:

o The start mode, in which the base tag is processed for the first time.

¢ The inactive mode, in which sub tags and other code contained within the base tag
are processed. No processing occurs in the base tag during this phase.

¢ The end mode, in which the base tag is processed a second time. The end mode
occurs when ColdFusion reaches the custom tag’s end tag.

Passing data between nested custom tags

A key custom tag feature is for collaborating custom tags to exchange complex data
without user intervention, while encapsulating each tag’s implementation so that others
cannot see it.

212 Chapter10 Creating and Using Custom CFML Tags

When you decide to you use nested tags, you must address the following issues:
e What data should be accessible?

e Which tags can communicate to which tags?

o How are the source and targets of the data exchange identified?

e What CFML mechanism is used for the data exchange?

What data is accessible?

To enable developers to obtain maximum productivity in an environment with few
restrictions, CFML custom tags can expose all their data to collaborating tags.

When you develop custom tags, you should document all variables that collaborating
tags can access and/or modify. When your custom tags collaborate with other custom
tags, you should make sure that they do not modify any undocumented data.

To preserve encapsulation, put all tag data access and modification operations into
custom tags. For example, rather than documenting that the variable MyQueryResults in
a tag's implementation holds a query result and expecting users to manipulate
MyQueryResults directly, create a nested custom tag that manipulates MyQueryResult.
This protects the users of the custom tag from changes in the tag's implementation.

Variable scopes and special variables

Use the Request scope for variables in nested tags. The Request scope is available to the
base page, all pages it includes, all custom tag pages it calls, and all custom tag pages
called by the included pages and custom tag pages. Collaborating custom tags that are
not nested in a single tag can exchange data using the request structure. The Request
scope is represented as a structure named Request.

Where is data accessible?

Two custom tags can be related in a variety of ways in a page. Ancestor and descendant
relationships are important because they relate to the order of tag nesting.

A tag’s descendants are inactive while the page is executed; that is, the descendent tags
have no instance data. A tag, therefore, can only access data from its ancestors, not its
descendants. Ancestor data is available from the current page and from the whole
runtime tag context stack. The tag context stack is the path from the current tag element
up the hierarchy of nested tags, including those in included pages and custom tag
references, to the start of the base page for the request. Both cfinclude tags and custom
tags appear on the tag context stack.

High-level data exchange

While the ability to create nested custom tags is a tremendous productivity gain, keeping
track of complex nested tag hierarchies can become a chore. The cfassociate tag lets the
parent know what the children are up to. By adding this tag to a sub tag, you enable
communication of its attributes to the base tag.

Nesting customtags 213

In addition, there are many cases in which descendant tags are used only as a means for
data validation and exchange with an ancestor tag, such as cfhttp/cfhttpparamand
cftree/cftreeitem. You can use the cfassociate tag to encapsulate this processing.

The cfassociate tag has the following format:

<{cfassociate baseTag="tagName" dataCollection="collectionName">

The baseTag attribute specifies the name of the base tag that gets access to this tag’s
attributes. The dataCollection attribute specifies the name of the structure in which the
base tag stores the sub-tag data. Its default value is AssocAttribs. You only need to specify

a dataCollection attribute if the base tag can have more than one type of subtag. It is
convenient for keeping separate collections of attributes, one per tag type.

Note: |f the custom tag requires an end tag, the code processing the structure referenced
by the dataCollection attribute must be part of end-tag code.

When cfassociate is encountered in a sub tag, the sub tag’s attributes are automatically
saved in the base tag. The attributes are in a structure appended to the end of an array
whose name is thisTag.collectionName.

The cfassociate tag performs the following operations:

<!--- Get base tag instance data --->
<{cfset data = getBaseTagData(baseTag)>

<l--- Create a string with the attribute collection name --->
<cfset collection_Name = "data.ffdataCollectionf">
<l--- Create the attribute collection, if necessary --->

<cfif not isDefined(collectionName)>

<cfset ffcollection_Nameff = arrayNew(1)>

<Jefif>

<!I--- Append the current attributes to the array --->

<cfset temp=arrayAppend(evaluate(collectionName), attributes)>

The code accessing sub-tag attributes in the base tag could look like the following:
<!--- Protect against no sub-tags --->
<cfparam Name='thisTag.assocAttribs' default=farrayNew(1)#>

<!I--- Loop over the attribute sets of all sub tags --->
<cfloop index=i from=1 to=ffarraylLen(thisTag.assocAttribs){>

<l--- Get the attributes structure --->
<{cfset subAttribs = thisTag.assocAttribs[il>
<!--- Perform other operations --->

</cfloop>

214 Chapter10 Creating and Using Custom CFML Tags

Ancestor data access

The ancestor’s data is represented by a structure object that contains all the ancestor’s
data.

The following functions provide access to ancestral data:

e GetBaseTaglList() Returnsa comma-delimited list of uppercase ancestor tag names,
as a string. The first list element is the current tag, the next element is the parent tag
name if the current tag is a nested tag. If the function is called for a top-level tag, it
returns an empty string.

e GetBaseTagData(TagName, InstanceNumber=1) Returns an object that contains all the
variables (not just the local variables) of the nth ancestor with a given name. By
default, the closest ancestor is returned. If there is no ancestor by the given name, or if
the ancestor does not expose any data (such as cfif), an exception is thrown.

Example: ancestor data access

This example creates two custom tags and a simple page that calls each of the custom
tags. The first custom tag calls the second. The second tag reports on its status and
provides information about its ancestors.

To create the calling page:
1 Create a ColdFusion page (the calling page) with the following content:

Call cf_nesttagl which calls cf_nesttag2

<{cf_nesttagl>
<hr>

Call cf_nesttag? directly

<{cf_nesttag2>
<hr>

2 Save the page as nesttest.cfm.

To create the first custom tag page:
1 Create a ColdFusion page with the following content:
<{cf_nesttag2>

2 Save the page as nesttagl.cfm.

To create the second custom tag page:
1 Create a ColdFusion page with the following content:

<cfif thisTag.executionmode is 'start'>
<!--- Get the tag context stack. The Tist will Took something Tike
"MYTAGNAME, CALLINGTAGNAME, ..." --->
<{cfset ancestorlist = getbasetaglist()>

<l--- Qutput your own name. You are the first entry in the context stack.
>
<cfoutput>

<p>I'm custom tag #ListGetAt(ancestorlist,1)#K/p>

Nesting customtags 215

<I--- output all the contents of the stack a line at a time --->
<cfloop index="Toopcount" from="1" to=ff1istlen(ancestorlist)i>
Ancestorlist entry #loopcount# n is #fListGetAt(ancestorlist,loopcount)ibr>

</cfloop>

</cfoutput>

<{I--- Determine whether you are nested inside a custom tag. Skip the first
element of the ancestor list, i.e., the name of the custom tag I'm in --->

<{cfset incustomtag = ''>

<cfloop index=elem
1ist=Flistrest(ancestorlist)i>
<cfif (Teft(elem, 3) eq 'cf_")>
<{cfset incustomtag = elem>
<cfbreak>
</cfif>
</cfloop>

<cfif incustomtag neq ''>
<!--- Say you are there --->
<cfoutput>
I'm running in the context of a custom
tag named #finCustomTagif.<p>
</cfoutput>

<I--- Get the tag instance data --->
<{cfset tagdata = getbasetagdata(incustomtag)>

<!--- Find out the tag's execution mode --->
I'm located inside the
<cfif tagdata.thisTag.executionmode neq 'inactive'>
custom tag code either because it is in
its start or end execution mode.
<{cfelse>
body of the tag
<Jcfif>
<p>
<{cfelse>
<!--- Say you are lonely --->
I'm not nested inside any custom tags. :~(<p>
<Jcfif>
<Jcfif>

2 Save the page as nesttag2.cfm.

3 Open the file nesttest.cfm in your browser.

216

Chapter10 Creating and Using Custom CFML Tags

CHAPTER 11
Building and Using ColdFusion

Components

ColdFusion components let you encapsulate and re-use code in ColdFusion
development, generate web services, and create Flash interfaces for your application.

Contents

o About ColdFusion compONnents...........ccueueueiririeueiiinirieiecirseeeeseeeeeeseseee s 218
¢ Building ColdFusion COMPONENTSovecvrueirueiriiieiiiereieieieierereeeveeeveeeenenes 219
¢ Interacting with component methodsc.ccouvueuecinniereinnineecnnecceeeene 222

¢ Using advanced ColdFusion component functionality

217

About ColdFusion components

ColdFusion components encapsulate application functionality and provide a standard
interface for client access to that functionality. Clients access component functionality by
invoking methods on components. Components support a variety of client interfaces,
including web pages, Flash movies, web services, and other objects accessible from
ColdFusion components and pages. Component method invocation serves as the
gateway to component functionality, including passing parameters and receiving
component method results.

Like other ColdFusion Markup Language (CFML) code reuse techniques, such as
user-defined functions (UDFs) and custom CFML tags, components let you create
application functionality that can be reused wherever you need it. If you want to modify,
add, or remove component functionality, you only need to make changes in one
component file.

Note: For more information about UDFs, custom tags, and other ColdFusion code reuse
techniques, see Chapter 8, “Reusing Code in ColdFusion Pages” on page 157.

Applying design patterns to component development

As your development projects grow larger and teams of developers become involved,
ColdFusion components can structure CEML to serve as building blocks for design
pattern methodologies.

Established design pattern specifications represent the accumulated knowledge of veteran
software developers, which is used to establish guidelines for application development.
When applied correctly, design patterns streamline software production, manage the
application development process, and ensure code maintainability for the life cycle of the
application.

When making the decision about whether to use a design pattern methodology for a

development project, keep the following points in mind:

e While implementing a design pattern methodology involves more planning initially,
you will save time and money later in the development cycle.

o FEach design pattern methodology has strengths and weaknesses. Select the
methodology that best fits your development project needs.

For more information about design patterns, see Rapid Development: Taming Wild
Software Schedules, Steve McConnell, 1996: Microsoft Press.

218 Chapter 11 Building and Using ColdFusion Components

Building ColdFusion components

Just like ColdFusion pages, you store component files in a domain accessible by your web

server and ColdFusion. Unlike ColdFusion pages, you save component files with the

CFC suffix, such as componentName.cfc.

Save your component files in one of the following locations:

e Directories accessible from the web server, which includes the web root and web
server virtual directories.

¢ Directories accessible from ColdFusion mappings.

o Subdirectories of custom tag roots.

Note: For more information about saving components and component naming
conventions, see “Using component packages” on page 237.

All ColdFusion variable scopes are available to components, including Session, Client,
Server, and Application. In addition, the This scope is available during component
method execution.

You use the cfcomponent and cffunction tags to create ColdFusion components. By
itself, the cfcomponent tag does not provide functionality. Rather, the cfcomponent tag
provides an envelope that describes the functionality that you build in CMFL and
enclose in cffunction tags.

Syntax for the cfcomponent tag
<cfcomponent extends="anotherComponent">

The following table displays the tag attribute, data type, and description:

Attribute Type Required Description For more information
extends string no Name of parent See “Using component
component. inheritance” on page 239.

Note: The cfcomponent tag is optional.

Syntax for the cffunction tag

<cffunction name="methodName" returnType="dataType"
roles="securityRoles" access="methodAccess" output="yes/no">

The following table displays the tag attribute, data type, and description:

Attribute Type Required Description For more information
name string yes Name of component See “Defining component
method methods” on page 220.
returnType string no Data type validation See “Returning values from
for returned values. component methods” on
page 232.
roles string no Assigns component “Building secure ColdFusion

method to ColdFusion components” on page 234.
security roles.

Building ColdFusion components 219

Attribute Type Required Description For more information

access string no Restricts component See “Building secure
method access by ColdFusion components” on
client type. page 234

output Boolean no Suppresses See “Building secure
component method ColdFusion components” on
output page 234.

The following example creates a component with two methods:

<cfcomponent>
<cffunction name="getEmp">
<cfquery name="empQuery" datasource="ExampleApps" dbtype="0DBC" >
SELECT FIRSTNAME, LASTNAME, EMAIL
FROM tblEmployees
</cfquery>
<cfreturn empQuery>
</cffunction>
<cffunction name="getDept">
<cfquery name="deptQuery" datasource="ExampleApps" dbtype="0DBC" >
SELECT *
FROM tblDepartments
</cfquery>
<cfreturn deptQuery>
</cffunction>
</cfcomponent>

In the example, two cffunction tags define two component methods, getEmp and getDept.
When invoked, the component methods query the ExampleApps database. The cfreturn
tag returns the query results to the client. For more information, see “Invoking
component methods” on page 222.

Defining component methods

Component method definitions exist between opening and closing cffunction tags. To
separate the component method code from the component file, use the cfinclude tag to
call the page that contains the component method code.

To create a component method:
1 Create a new ColdFusion component, and save it as tell Time.cfc in a directory below
your web-root directory.

2 Modify the code so that it appears as follows:

<cfcomponent>
<cffunction name="getlocalTime">

<cfscript>
serverTime=now();
lTocalStructure=structNew();
localStructure.Hour=DatePart("h", serverTime);
lTocalStructure.Minute=DatePart("n", serverTime);

</cfscript>

220 Chapter 11 Building and Using ColdFusion Components

<cfoutput>
#localStructure.Hour#:#localStructure.Minutes
</cfoutput>
</cffunction>
</cfcomponent>

In the example, the cfscript and cfoutput statements execute during component
method processing.

3 Save your work.

By placing the method execution code in a separate file, template methods separate
execution and markup code from the component method definitions.

To create component method using the cfinclude tag:
1 Open the tellTime.cfc file, and modify the code so that it appears as follows:

<cfcomponent>
{cffunction name="getlLocalTime">
<cfinclude template="getTime.cfm">
</cffunction>
</cfcomponent>

In the example, the getlLocalTime method definition calls the getTime.cfm file with
the cfinclude tag.

2 Save your work.

Create a ColdFusion page, and save it as getTime.cfm in the same directory as
tell Time.cfc.

4 Modify getTime.cfm so that the code appears as follows:

<cfscript>
serverTime=now();
TocalStruct=structNew();
localStruct.Hour=DatePart("h", serverTime);
localStruct.Minute=DatePart("n", serverTime);
</cfscript>
<cfoutput>flocalStruct.Hourf:#localStruct .Minutef</cfoutput>

In the example, a CFScript statement uses the now() and DatePart() functions to
populate a structure with hour and minute values. The values are then displayed with
the cfoutput tag. Notice that no value is returned to the client. Instead, the getTime
method displays the variable.

5 Save your work.

Building ColdFusion components 221

Interacting with component methods

The vast majority of ColdFusion applications require data to be passed back and forth
between a number of pages. For example, a typical web shopping cart application uses
multiple ColdFusion pages to gather user data, access databases, and confirm credit card
information.

ColdFusion components support passing and returning simple and complex values using
the cfinvoke tag, URL and form controls, CFScript, the Macromedia Flash Remoting
service, and web services. Whether you are receiving registration information from a
simple HTML page or passing a query object back to a sophisticated web service,
interacting with ColdFusion components means that you must be able to pass data into
and out of a component.

Interacting with components consists of the following operations:

¢ Invoke a component method Use the cfinvoke tag in ColdFusion pages and
components, the HTTP form methods GET and POST, CFScript invocation, Flash
Remoting invocation, or web service invocation. For more information, see
“Invoking component methods” on page 222.

e DPass a parameter to a component method Do three things: define the parameter in
the component method definition, choose a parameter-passing technique, and access
the data passed in the parameter. For more information, see “Passing parameters to
component methods” on page 226.

¢ Return a value from a component method Do two things: insert the cfreturn tag
into the component method definition to specify a variable to return to the client,
and access the returned values in the client. For more information, see “Returning
values from component methods” on page 232.

Invoking component methods

To interact with ColdFusion components, you invoke component methods from the
client. Components support many client types, including web pages, ColdFusion pages,
Flash movies, web services, and other components. The invocation process depends on
what type of client invokes a component method.

The following table displays the different ways to invoke component methods:

Invocation Description For more information

cfinvoke tag The cfinvoketag instantiatesand See “Invoking component methods
invokes component methods from using the cfinvoke tag” on page
within ColdFusion pages and 223.
components.

cfobject tag The cfobject tag instantiates a See “Invoking component methods
component. However, you must using the cfobject tag” on page
still use the cfinvoke tag or 225.

CFScript to invoke component
methods, pass parameters, and
return results.

222 Chapter 11 Building and Using ColdFusion Components

Invocation Description For more information

URL control You use the component and See “Invoking component methods
(HTTP GET) method names in the URL stringto using a URL” on page 225.
invoke component methods.

Form control HTML and ColdFusion forms See “Invoking component methods
(HTTP POST) invoke component methods using using a form” on page 225.

the HTML form and input tags and

their attributes.

CFScript CFScript instantiates component See “Invoking component methods
methods using the createObject with CFScript” on page 226.
function. The component method
can then be called using
componentName.componetMetho
d() syntax.

Flash Remoting In client-side ActionScript, you use See Chapter 29, “Using the Flash
the NetServices functions to Remoting Service” on page 673.
invoke component methods.

Web services You use the cfinvoke tag and See Chapter 31, “Using Web
CFScript to consume web services Services” on page 729.
in ColdFusion.

Note: To restrict component method invocation, you use the access and roles attributes of
the cffunctiontag. For more information, see “Using web server authentication” on page
234.

Note: To invoke components within the component method definition, you use the
cfinvoke tag with its method attribute. In CFScript, you use the method name in standard
function syntax, such as methodName().

Invoking component methods using the cfinvoke tag

In ColdFusion pages or components, use the cfinvoke tag to invoke component
methods. You can place multiple cfinvoke tags in a ColdFusion page to invoke multiple
component methods.

Syntax for the cfinvoke tag

<cfinvoke component="componentName" method="methodName"
returnVariable="variableName" argumentCollection="argumentStruct">

The following table displays the tag attribute, data type, and description:

Attribute Type Required Description For more information
component string yes Name of

component
method string yes Name of See “Invoking

component method component methods
using the cfinvoke tag”
on page 223.

Interacting with component methods 223

Attribute Type Required Description For more information

returnVariable string no Creates avariable See “Returning values
by the name from component
entered and methods” on page 232.
assigns the
component method
results into that
variable

argumentCollection structure no Passes structureto See “Passing
componentmethod parameters to
as parameters component methods”

on page 226

To invoke a component method using the cfinvoke tag:
1 Open the tellTime.cfc file, and modify the code so that it appears as follows:

<cfcomponent>
<cffunction name="getlLocalTime">
<cfscript>
serverTime=now();
TocalStruct=structNew();
localStruct.Hour=DatePart("h", serverTime);
localStruct.Minute=DatePart("n", serverTime);

</cfscript>
<cfoutput>#localStruct.Hourf:#localStruct.Minutefi</cfoutput>
</cffunction>
<cffunction name="getUTCTime">
<cfscript>

serverTime=now();
utcTime=GetTimeZonelnfo();
utcStruct=structNew();
utcStruct.Hour=DatePart("h", serverTime);
utcStruct.Minute=DatePart("n", serverTime);
utcStruct.Hour=utcStruct.Hour + utcTime.utcHour0ffSet;
utcStruct.Minute=utcStruct.Minute + utcTime.utcMinuteOffSet;

</cfscript>

<cfoutput>ffutcStruct.Hours:ffutcStruct .Minutefi</cfoutput>

</cffunction>
</cfcomponent>

The example defines two component methods, getLocalTime and getUTCTime.

2 Create a new ColdFusion page, and save it as timeDisplay.cfm in the same directory
as the tellTime component.

3 Modify the ColdFusion page so that is appears as follows:

<h3>Time Display Page</h3>

Server's Local Time:

<cfinvoke component="tell1Time" method="getLocalTime">

Calculated UTC Time:

<cfinvoke component="tel1Time" method="getUTCTime">

Using the cfinvoke tag, the example invokes the getLocalTime and getUTCTime
component methods.

224

Chapter 11 Building and Using ColdFusion Components

4 The following figure shows the results when you execute timeDisplay.cfm in a web
browser:

Time Display Page

Server's Local Time: 12:26
Calculated UTC Time: 17:26

|

Invoking component methods using the cfobject tag

To separate the instantiation of the component and the invocation of the component
method, use the cfobject tag. First, use the cfobject tag to instantiate the component
and assign the component to a variable; for example:

<cfobject name="tellTimeComp" component="tellTime">

To invoke component methods, use the cfinvoke tag. The cfinvoke tag’s name attribute
references the variable name in the cfobject tag’s name attribute; for example:
<cfobject name="tellTimeComp" component="tell1Time">

<cfinvoke component="#tel11TimeComp#" method="getlLocalTime">
<cfinvoke component="#ttel11TimeCompft" method="getUTCTime">

Invoking component methods using a URL

To invoke a component method using a URL, you must append the method name to the
URL in the standard URL query-string, name-value syntax. You can only invoke one
component method per URL request; for example:

http://localhost:8500/tel1Time.cfc?method=getLocalTime

Note: To use URL invocation, you must set the cffunctiontag’s access attribute to remote.

Invoking component methods using a form

To invoke a method using a ColdFusion or an HTML form, you must enter the file path
to the ColdFusion component in the action attribute and the method name as a form
variable that is submitted.

Note: To use form invocation, you must set the cffunctiontag’s access attribute to remote.

To invoke component methods using a form:
1 Open timeDisplay.cfm, and modify the page so that it appears as follows:

<h3>Time Display Page</h3>

<p>Make your selection and press the Got the time? button:</p>

<cfform action="tellTime.cfc" method="POST">

<cfselect name="Method" required="Yes">
<option value="getlLocalTime" selected>Local Time</option>
<option value="getUTCTime">UTC Time</option>

</cfselect>

<input type="submit" value="Got the time?">

</cfform>

Interacting with component methods 225

In the example, the cfform tag’s action attribute points toward the tell Time
component file. The cfselect statement passes the component method name.

2 Save your work.

Start your web browser, and browse to the following URL:
http://Tocalhost:8500/timeDisplay.cfm
The following figure shows the results:

(=] 9]
J File Edit ‘iew Favorites Tools
El
Time Display Page
Wlake your selection and press the
Got the tume? button:
ILDcaI Time vl Got the time? |
E

Make a selection from the drop-down box, and click the Got the Time? button.
Depending on your selection, the server’s local or UTC time displays.

Invoking component methods with CFScript

To invoke a a component method using CFScript, use the createObject function or
cfobject tag to instantiate the component. After you instantiate the component, you use
normal function syntax to invoke component methods; for example:

<I--- instantiate once and reuse the instance--->
<cfscript>

tel1TimeCFC=createObject ("component”,"tel1Time");
</cfscript>
Server's Local Time:

<cfscript>

tel1TimeCFC.getLocalTime();

</cfscript>

Calculated UTC Time:
<cfscript>

te11TimeCFC.getUTCTime();
</cfscript

In the example, the two CFScript statements assign the tel1TimeCFC variable to the
tel1Time component using the createObject function. Next, you use normal function
syntax to invoke the component method.

Passing parameters to component methods

To perform conditional processing in ColdFusion components based on data sent from
the client, you pass parameters to component methods. In ColdFusion applications,
parameters typically consist of user name and password information, session state data,
keywords for database queries, and so on.

226 Chapter 11 Building and Using ColdFusion Components

To pass parameters in ColdFusion components:

1 Define the parameter in the component method definition using the cfargument
tag. For more information, see “Defining the parameter in the component method
definition” on page 227.

2 Choose your parameter-passing technique. Use the parameter-passing technique
best suited for your client type. For more information, see “Choosing a
parameter-passing technique” on page 228.

Defining the parameter in the component method definition

In the component method, you create parameter definitions using the cfargument tag
within the component method definition. You define multiple parameter with multiple
cfargument tags. To access the parameter values in the component method definition, you
use structure- or array-like notation with the argument variable.

Syntax for the cfargument tag

<cfargument name="parameterName" type="dataType"
required="true/false"default="defaultValue">

The following table displays the tag attribute, data type, and description:

Attribute Type Required Description

name string yes Name of parameter

type datatype no Validates all valid data types

required Boolean no Specifies whether the parameter is required
to execute the component method

argumentCollection alltypes no Provides a default value when a parameter is
not passed

Also, if the required attribute is not set to true, you can specify a default value for the
q y p

parameter value using the default attribute. The following example defines two

parameters and references the parameter values in the component method definition.

Note: For the following procedures to work, you must have the example applications
installed with ColdFusion. For more information, see CFML Reference.

To define parameters in the component method definition:

1 Create a new component, and save it as corpQuery.cfc in a directory under your web
root directory.

2 Modify the code in corpQuery.cfc so that it appears as follows:

<cfcomponent>
<cffunction name="getEmp">

<cfargument name="lastName" required="true">

<cfquery name="empQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT LASTNAME, FIRSTNAME, EMAIL
FROM tb1Employees
WHERE LASTNAME LIKE 'ffarguments.lastName#'

</cfquery>

Interacting with component methods 227

<cfoutput>Results filtered by #farguments.TastNamesf:</cfoutput>

<cfdump var=ffempQueryif>

</cffunction>

{cffunction name="getCat">

<cfargument name="cost" required="true">

<cfquery name="catQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT ItemName, ItemDescription, ItemCost
FROM tblItems
WHERE ItemCost <= ffarguments.cost#

</cfquery>

<{cfoutput>Results filtered by f#farguments.costi#:</cfoutput>

<cfdump var=ffcatQuerys>

</cffunction>
</cfcomponent>

In the example, the cfargument tag’s name attribute defines the parameter’s name. The

required attribute indicates that the parameter is required or an exception will be

thrown. The arguments variable scope provides access to the parameter values.

Note: You can also reference multiple parameter values using array- and structure-like
syntax. For example, arguments.costis the same as argument[1]. Array and structure-like
notation also lets you loop over multiple parameters. In addition, you can access

arguments directly using pound signs, such as #cost#.

3 Save your work.

Choosing a parameter-passing technique

Like ColdFusion pages, you can pass parameters using a URL or the HTTP GET and POST
form methods with ColdFusion components. Components also accept passing

parameters using the cfinvoke tag.

The following table describes your parameter-passing options:

Parameter type

Description

For more information

cfinvoke tag

cfinvokeargument
tag

URL

Form

CFScript

Specify the parameters as
cfinvoke tag attributes or the
argumentsCollection attribute.

Specify parameter name and
values using the
cfinvokeargument tag.

Specify the parameters in the
standard URL query-string,
name-value pair syntax.

Specify the parameters as form
input values.

Specify the parameters as
ordered arguments or named
arguments.

See “Passing parameters using
the cfinvoke tag” on page 229.

See “Passing parameters using
the cfinvokeargument tag” on
page 229.

See “Passing parameters using a
URL” on page 230.

See “Passing parameters using a
form” on page 230.

See “Passing parameters using
CFScript” on page 232.

228 Chapter 11 Building and Using ColdFusion Components

Parameter type Description For more information

Flash Remoting Specify the parameters in See Chapter 29, “Using the
client-side ActionScript. Flash Remoting Service” on
page 673.
Web services Specify the parameters as See Chapter 31, “Using Web
cfinvoke tag attributes or the Services” on page 729.

argumentsCollection attribute.

Passing parameters using the cfinvoke tag

You can pass a single or multiple parameters in one cfinvoke tag as tag attribute
name-value pairs. The following example passes a single parameter:

<cfinvoke component="authQuery" method="getAuth" TastName=session.username>

In the example, the TastName attribute passes the value of the session scope variable to the

component method. To pass multiple parameters, use an attribute name-value pair for

each parameter; for example:

<cfinvoke component="authQuery" method="getAuthSecure"
lTastName=session.username password=furl.password#>

In the example, the parameters are passed as the 1astName and password attributes. Notice

that different variable scopes are used in the attribute values.

Note: The cfinvoke tag attribute names are reserved and cannot be used for parameter

names. The reserved attribute names are component, method, argumentCollection, and

returnVariable. For more information, see CFML Reference.

If you save attributes to a structure, you can directly pass the structure using the cfinvoke

tag’s argumentCollection attribute.

The following example invokes a component that performs simple addition and
subtraction:
<cfscript>

exampleStruct = StructNew();

exampleStruct[1] = 1;

exampleStruct[2] = 2;
</cfscript>
<cfinvoke component="arithCFC" method="add" argumentCollection=exampleStruct>
This example passes two parameters to the component method as a structure. Notice the
use of the argumentCollection attribute of the cfinvoke tag.

Passing parameters using the cfinvokeargument tag

To pass parameters independently of the cfinvoke tag, use the cfinvokeargument tag.
Using the cfinvokergument tag, for example, you can build conditional processing that
passes a different parameter based on user input.

Interacting with component methods 229

Syntax for the cfinvokeargument tag
<cfinvokeargument name="parameterName" value="anyValue">

The following table displays the tag attribute, data type, and description:

Attribute Type Required Description
name string yes Name of parameter
value alltypes yes Value of parameter

The following example invokes the corpQuery component:

<cfinvoke component="corpQuery" method="getEmp">
<cfinvokeargument name="lastName" value="camden">

Notice that the cfinvokeargument tag passes the TastName parameter to the component
method.

Note: For more information about parameter precedence, see CFML Reference.

Passing parameters using a URL

To pass parameters to component methods using a URL, append the parameters to the
URL in standard URL query-string, name-value pair syntax. For example:

http://localhost:8500/corpQuery.cfc?method=getEmp&lastName=camden

To pass multiple parameters within a URL, use the ampersand (&) character to delimit
the name-value pairs. Here is an example:

http://Tocalhost:8500/
corpQuerySecure.cfc?method=getAuth&store=women&dept=shoes

Note: Due to security concerns, Macromedia strongly recommends that you do not pass
sensitive information over the web using URL strings. Potentially sensitive information
includes all personal user information, including passwords, addresses, telephone numbers,
and so on.

Passing parameters using a form

To pass parameters to components using an HTML or ColdFusion form, the names of
the client input controls must match the names of the parameter definition in the
component file.

To pass parameters using a form:
1 Open the corpFind.cfm file and modify the code so that it appears as follows:

<h2>Find People and Products</h2>

<form action="components/corpQuery.cfc" method="post">
<p>Enter employee's Tast Name:</p>
<input type="Text" name="TastName">
<input type="Hidden" name="method" value="getEmp">
<input type="Submit" title="Submit Query">

</form>

<form action="components/corpQuery.cfc" method="post">
<p>Enter maximum product price:</p>
<input type="Text" name="cost">
<input type="Hidden" name="method" value="getCat">

230 Chapter 11 Building and Using ColdFusion Components

<input type="Submit" title="Submit Query">
</form>

In the example, the form tag action attribute points to the corpQuery component. The
nput tags invoke the component method.

Open corpQuery.cfc and add access="remote" to each cffunction tag, as the
following example shows:

<cfcomponent>
<cffunction name="getEmp" access="remote">
<cfargument name="lastName" required="true">
<cfquery name="empQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT LASTNAME, FIRSTNAME, EMAIL
FROM tblEmployees
WHERE LASTNAME LIKE 'ffarguments.lastNameft'
</cfquery>
<{cfoutput>Results filtered by ffarguments.lastNamest:</cfoutput>

<cfdump var=ftempQueryif>
</cffunction>
<cffunction name="getCat" access="remote">
<cfargument name="cost" required="true">
<cfquery name="catQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT ItemName, ItemDescription, ItemCost
FROM tblItems
WHERE ItemCost <= ffarguments.cost#
</cfquery>
<{cfoutput>Results filtered by ftarguments.costi:</cfoutput>

<cfdump var=ffcatQueryip>
</cffunction>
</cfcomponent>

In this example, the cffunction access attribute lets remote clients, such as web
browsers and Flash applications, to access component methods.

Save your work.

Open a web browser and enter the following URL:
http://Tocalhost/corpFind.cfm
The following figure shows the results:

3 http:/ /localhost:8100/ corpQue i | Ellll
J File Edit Wiew Favorites Tools Help

Find People and Products
Enter employee's last Mame:

| Submit Query |

Enter masamum product price:

| Submit Query |

/|

Interacting with component methods 231

Depending on what you enter, after you click the Submit Query button, the web
browser displays the results, as shown in the following figure:

/ flocalhost:8100/ corpQuery.cl ;Jgjzj
|| Ele Edt Vew Favortes ook Help N |
=
Eesults filtered by camden:
ENATL FIRSTMAME[LASTINANE
jedimaster@macromedia. com|Raymond Camden
jacob@macromedia com Jacob Camden
[

Passing parameters using CFScript

The following example instantiates a component, invokes the getAuth component
method in three different ways, and passes parameters in each method invocation:

{cfscript>
corpQCFC = createObject("component™, "corpSecurity");
corpQCFC.getAuth(username="skippy" password="dippy");
tempStruct = structNew();
tempStruct.username = "skippy"
tempStruct.password = "dippy"
corpQCFC.getAuth(argumentsCollention = tempStruct);
corpQCFC.getAuth("skippy", "dippy");

</cfscript>

Returning values from component methods

In the component method definition, you return the results to the client using the
cfreturn tag. The equivalent to the return CFScript statement, the cfreturn tag only
accepts one variable to return at a time. Therefore, if you want to return more than one
result value at a time, populate a structure with name-value pairs and return the structure
using the cfreturn tag.

To access the result values returned to the client, use the variable scope specified as the
value of the cfinvoke tag’s returnVariable attribute.

Returning component method results to the client

To return component method results to the client, use the cfreturn tag in the
component method definition. You can pass values of all data types, including strings,
integers, arrays, and structures.

To prepare the component method definition to return a value:
1 Open the corpQuery.cfc file, and modify the code so that it appears as follows:

<cfcomponent>
<cffunction name="getEmp">
<cfquery name="empQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT LASTNAME, FIRSTNAME, EMAIL
FROM tblEmployees
</cfquery>

232

Chapter 11 Building and Using ColdFusion Components

<cfreturn empQuery>
</cffunction>
<cffunction name="getCat">
<cfquery name="catQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT ItemName, ItemDescription, ItemCost
FROM tblltems
</cfquery>
<cfreturn catQuery>
</cffunction>
</cfcomponent>

In the example, the cfreturn tags return the query objects created by the component
methods.
Save your work.

Open the corpFind.cfm file, and modify the code so that it appears as follows:

<cfinvoke component="corpQuery" method="getEmp" returnVariable="empResult">
<cfdump var=ffempResult#>

In the example, the cfinvoke tag’s returnvariable attribute specifies the variable scope
name that holds the component method results. The cfdump tag displays the contents
of the empResult variable.

Open a web browser and browse to the following URL:

http://localhost/corpFind.cfm
The following figure shows the results:

a http:/ /localhost:8100/corpFind.cfm -

File Edt Wiew Favorites Tools Help

B

ERATL FIESTNAME|LASTNAME 2l
scheng@macromedia com Stephen Cheng _I
[iberrey@macromedia com Toe Berrey
dipmsky@macromedia com |[Adam Lipinsky
lreague@macromedia.cotmn Lynne Teague

wgilson@macromedia com Wictoria Gilsen
creffi@macromedia com Charles Reiff
vehin@macromedia com Wicki Chin =

Interacting with component methods 233

Using advanced ColdFusion component functionality

Beyond basic component functionality, ColdFusion components offer advanced

functionality to streamline application development, deployment, and extensibility. The

following table displays advanced component functionality:

Feature Description For more information
Component method Using the roles and access See “Building secure ColdFusion
security attributes of the cffuncitontag, components” on page 234.

you build component
method-level security measures.

Component Using component packages, you See “Using component

packages avoid possible naming conflicts packages” on page 237.
with components.

Component Using the extends attribute of the See “Using component

inheritance cfcomponent tag, you import inheritance” on page 239.

another component’s methods
and properties.

Component Using component metadata, you See “Using component
introspection can describe component metadata” on page 240.

functionality programmatically.

Building secure ColdFusion components

To restrict access to component methods, ColdFusion components use the following

security features:

1

Web server basic authentication

For more information, see “Using web server authentication” on page 234.
Application security

For more information, see “Using ColdFusion application security” on page 235.
Role-based security

For more information, see “Using role-based security” on page 236.
Programmatic security

For more information, see “Using programmatic security” on page 237.

Using web server authentication

The majority of web servers allow directory access protection using basic authentication.

When a client tries to access one of the resources under a protected directory and is not

properly authenticated, the server automatically sends back a authentication challenge to

the web browser. The web browser shows a login dialog box.

When you enter your authentication information, the web browser authenticates the

information to the web server. If the authentication passes, the web browser caches the

authentication data while the browser window is open and every subsequent request to
the web server sends the same authentication data

234 Chapter 11 Building and Using ColdFusion Components

ColdFusion developers can use the authentication information for ColdFusion resources,
such as ColdFusion pages or components, in the appropriate application.cfm file, as the
following example shows:

<cflogin>
<cfif IsDefined(“cflogin”)>
<cfif cflogin.name eq “admin”>
<{cfset roles = “user,admin”>
{cfelse>
<{cfset roles = “user”>
</cfif>
<cfloginuser name = "ficflogin.nameff”
password = “#cflogin.passwordi”
roles = “ffroless#” />
{cfelse>
<!--- this should never happen --->
<h4>Authentication data is missing.</h4>
Try to reload the page or contact the site administrator.
<cfabort>
</cfif>
</cflogin>

Using ColdFusion application security

You can use the previous example with minor modification to include the login challenge
in the application.cfm file as well. You can create an HTML form page that passes
authentication information to ColdFusion, or you can return the access-denied 401
information back to the web browser.

The following example shows an authentication challenge by generating and HTML
page with a login form. The login form sends two form fields, j_username and
j_password, to ColdFusion, which are automatically detected by the cflogin tag.

<cflogin>
<cfif IsDefined("cflogin")>
<cfif cflogin.name eq "admin" and cflogin.password eq "pl">
<{cfset roles = "user,admin">
<cfelseif cflogin.name eq "user" and cflogin.password eq "p2">
<{cfset roles = "user">
</cfif>
{Jefif>
<cfif IsDefined("roles")>
<cfloginuser name="ffcflogin.nameft"
password="#fcflogin.passwordi"
roles="s#roles#">
<{cfelse>
<l--- authentication failed - generate the Togin form --->
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><title>Application Log In</title></head>

<body>
<form action="" method="post">
<pre>
username: <input type="text" name="j_username">
password: <input type="password" name="j_password">
<input type="submit" value="Tog in">
</pre>

Using advanced ColdFusion component functionality 235

</form>
</body>
</html>
<cfabort>
</cfif>
</cflogin>

When you return a 401 access denied response, the browser automatically displays a login
dialog box. When the user enters his or her login dialog, the authentication parameters
are passed in the request header and are detected by the cflogin tag, as shown in the
following example:
<cflogin>
<cfif IsDefined("cflogin")>
<cfif cflogin.name eq "admin" and cflogin.password eq "pl">
{cfset roles = "user,admin">
<cfelseif cflogin.name eq "user" and cflogin.password eq "p2">
<{cfset roles = "user">
</cfif>
<Jefif>
<cfif IsDefined("roles")>
<cfloginuser name="#cflogin.namef" password="s#cflogin.passwordi"
roles="groles#">
<{cfelse>
<l--- authentication failed - send back 401 --->
{cfsetting enablecfoutputonly="yes" showdebugoutput="no">
<{cfheader statuscode="401">
<{cfheader name="WWW-Authenticate" value="Basic realm=""MySecurity""">
<cfoutput>Not authorized</cfoutput>
<cfabort>
</cfif>
</cflogin>

The security realm name can be used to bind multiple directories together. If
Application.cfm files located in those directories use the same realm name, only a single
login is required to access resources in those directories. However, each Application.cfm
file can establish different roles for a user.

Using role-based security

Access to a particular method in component can be restricted using roles security. When
a component method is restricted to one or more roles using the roles attribute of the
cffunction tag, users must fall into one of the security roles, as shown in the following
example:

<{cffunction name="foo” roles="admin,moderator”>
</cffunction>

Use the cfloginuser tag to establish the security roles. The cflogin tag caches the
authentication information.When a user tries to invoke a method that he or she is not
authorized to invoke, an exception is returned. For more information, see Chapter 16,

“Securing Applications” on page 347.

236 Chapter 11 Building and Using ColdFusion Components

Using programmatic security

In the component method definition, you can protect resources using the same CFML
constructs as ColdFusion pages. For example, the IsUserInRole function determines
whether the user is authenticated in a particular security role:

<cffunction name="foo”>

<cfif IsUserInRole(“admin”)>
.. do stuff allowed for admin
{cfelseif IsUserInRole(*“user”)>
.. do stuff allowed for user
{cfelse>
<cfoutput>unauthorized access</cfoutput>
<cfabort>
</cfif>

</cffunction>

Using component packages

Components invoked by ColdFusion pages do not need to be in the same directory as the
client ColdFusion page or component, web page, or Macromedia Flash movie. In fact,
components can reside in any folder under the web root directory or virtual directory
mapping in the web server, in a directory under a ColdFusion mapping, or the custom
tag roots.

Components stored in the same directory are members of a component package.

Component packages help prevent naming conflicts and facilitate easy component
deployment.

To invoke a packaged component method using the cfinvoke tag:

1

2
3
4
5

6

In your web root directory, create a folder named appResources.

In the appResources directory, create a folder named components.

Move tellTime.cfc and utcTimeFormatted.cfm to the components directory.
Create a new ColdFusion page and save it in your web root as timeDisplay.cfm.

Modify the page so that is appears as follows:

<h3>Time Display Page</h3>

Server's Local Time:

<cfinvoke component="appResources.components.tellTime"
method="getLocal Time">

Calculated UTC Time:

<cfinvoke component="appResources.components.tellTime"
method="getUTCTime">

You use dot syntax to navigate directory structures. Prefix the directory name before
the component name.

Save your work.

The following example shows a CFScript invocation:

<cfscript>

hel1oCFC = createObject("component", "appResources.components.catQuery");
helloCFC.getSaleltems();

</cfscript>

Using advanced ColdFusion component functionality 237

The following example shows an URL invocation:

http://Tocalhost/appResources/components/catQuery.cfc?method=getSalesItems

Saving ColdFusion components

The following table contains the locations in which you can save component files and the
available accessibility options from each location:

ColdFusion Custom Current
Web root mappings tag roots directory
URL Yes Yes No Yes
Form Yes No No Yes
Flash Remoting Yes No No Yes
Web services Yes No No Yes
Local Yes Yes Yes Yes

Note: ColdFusion mappings and custom tag roots can exist within the web root. If so, they
are accessible to remote requests, including URL, form, Flash Remoting, and web service
invocation.

Naming ColdFusion components

Establishing a descriptive naming convention is a good practice, especially if the
components will be installed as a part of packaged application. Like the common Java
naming convention, you can reserve the order of your domain name, continue with
application name, and so on, as the following example shows:

com.mycompany .catalog.product.saw

When you refer to a component using the fully qualified name, ColdFusion looks for the

component in the following order:

¢ ColdFusion attempts to resolve the physical path from the request, such as /com/
mycompany/catalog/product/saw.cfc, to a component file located in directories
under the web root or directories under ColdFusion mappings.

o Otherwise, ColdFusion attempts to resolve the physical path in the custom tag root,
such as {customTagRoot}/com/mycompany/catalog/product/saw.cfc,.

When a component is invoked using any of the interfaces mentioned previously,
ColdFusion generates the key name in the component metadata structure in the
following order:

o Ifa component file exists in a directory accessible by ColdFusion mappings, use
GetRealPath function to evaluate the component physical path. The URI path string
after .cfc and the leading slash is removed, and all slashes are replaced with dots.

e Otherwise, ColdFusion loops over the custom tag roots looking for the ancestor
directory of the component. The physical path string after the root path and file
extension are removed, and all slashes are replaced with dots

¢ Otherwise, ColdFusion uses the file name without the extension as the component
name.

238 Chapter 11 Building and Using ColdFusion Components

Using component inheritance

Component inheritance lets you import component methods and properties from one
component into another component. In addition, inherited components also share any
component methods or properties that they inherit from other components.

When using component inheritance, inheritance should define an is a relationship
between components. For example, a component named president.cfc inherits the
component methods of manager.cfm, which inherits its methods from employee.cfc. In
other words, president.cfc s 2 manager.cfc. The manager.cfc is 2 employee.cfc. In turn,
president.cfc is employee.cfc

To use component inheritance:
1 Open the corpQuery.cfc file, and modify the code so that it appears as follows:

<cfcomponent extends="appResources.components.tellTime">
{cffunction name="getEmp" returnType="query">
<cfargument name="lastName" required="yes">
<cfquery name="empQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT LASTNAME, FIRSTNAME, EMAIL
FROM tblEmployees
WHERE LASTNAME LIKE 'ffarguments.lastNamest'
</cfquery>
<cfif empQuery.recordcount LT 1>
<cfthrow type="noQueryResult"
message="No results were found. Please try again.">
<{cfelse>
<cfreturn empQuery>
</cfif>
</cffunction>
<cffunction name="getCat" returnType="query">
<cfquery name="catQuery" datasource="ExampleApps" dbtype="0DBC">
SELECT ItemName, ItemDescription, ItemCost
FROM tb1Items
</cfquery>
<cfif fflgetCat.recordcountsf LT 1>
<cfthrow type="noQueryResult"
message="No results were found. Please try again.">
<{cfelse>
<cfreturn catQuery>
</cfifd>
</cffunction>
</cfcomponent>

In the example, the cfcomponent tag’s extends attribute points to the tel1Time
component.

2 Save your work.
Create a new ColdFusion page, and save it as inherit.cfm in your web-root directory.

Modify the code in the inherit.cfm file so that it appears as follows:

<cfinvoke component="corpQuery" method="getEmp" TlastName="gilson">
<cfinvoke component="corpQuery" method="getlLocalTime">

5 Save your work.

Using advanced ColdFusion component functionality 239

When you execute the inherit.cfm file, the getLocalTime component method executes
like the getEmp component method.

Using component metadata

When you access a ColdFusion component directly with a web browser without

specifying a component method, the following chain of events occurs:

o The request is redirected to CFCExplorer.cfc, which is located in the
[webroot]\CFIDE\componentutils directory.

o The CFCExplorer component prompts users for the ColdFusion RDS password.

o The CFCExplorer renders an HTML description. For example, when the corpQuery

component is accessed directly by a web browser, it produces the following results:

The following figure shows the HTML description for the corpQuery component:

3 Component corpQuery - Microsoft Internet E = |EI|1|

J File Edit Wiew Favorites Tools Help

| v

flashTest corpQuery
Component corpQuery

hierarchy: WEB-INF.cftags.component
flashTest.corpQuery

path: CNCFusionMEhwwwrootiflashTesthcorpQuery .ofc
properties: b
methods: etCat, getErmnp

* - private method

getCat
getCat |)

OQutput: enabled

getEmp
getEmp ()

OQutput: enabled

-
@ T ot

The description that displays in the web browser, components list the methods that you
build. Development teams can use a component’s automatically generated description as
always up-to-date API reference information.

In addition, you can use the cfcToMCDL and cfcToHTML component methods of utils.cfe,
which is located in the [webroot]\CFIDE\componentutils directory.

You can also browse the components available in ColdFusion using the Component
Browser, which is located at [webroot\CFIDE\componentutils\componentdoc.cfm.

240 Chapter 11 Building and Using ColdFusion Components

The following figure shows the Component browser:

View Favorites

Tools

Help

=10l x|

all components] [refresh

All components

Packages cfdocs.exampleapps . cfctempoonverter
cfdocs.exampleapps flash3 . flash3

cfdocs.exampleapps.cfc cfdocs.exarmpleapps flashd flashd

cfdocs.exampleapps flash3 cfdocs.exarmpleapps flashS . flashs

C
i

cfdocs.exampleapps flash4
f

CFIDE.componentutils CFCExplarer

cfdocs.exampleapps flashs CFIDE . componentutils..utils
CFIDE.componentutils flashTest.corpQuery
flashTest flashTest.empObi
WEB-INF.cftags flashTest.empQueryComp
flashTest.empTest
flashTest.flashCormponents

All components

CFCExplorer
component
corpQuery
ermpohi
empQueryComp

= [k =t =t |
o
i
T
T

shComponents

-

empconyerter
utils

WEB-INF.cftags.component

]

’_ ’_ ’_ (2 Local intranet

Note: To access the Component Browser in a virtual directory, you must add the virtual

directory to the ColdFusion mappings.

Using advanced ColdFusion component functionality

241

242 Chapter 11 Building and Using ColdFusion Components

CHAPTER 12
Building Custom CFXAPI Tags

Sometimes, the best approach to application development is to develop elements of your
application by building executables to run with ColdFusion. Perhaps the application
requirements go beyond what is currently feasible in CFML. Perhaps you can improve
application performance for certain types of processing. Or, you have existing code that
already solves an application problem and you want to incorporate it into your
ColdFusion application.

To meet these types of requirements, you can use the ColdFusion Extension Application
Programming Interface (CFX API) to develop custom ColdFusion tags. This chapter
documents custom tag development using Java or C++.

Contents

o What are CEX tags? ...cocevieirieiniiinieiricirietrietrteet ettt es s 244
¢ Before you begin developing CFX tags in Javaccccccocieiiiriiciinncciincccene 245
o Writing a Java CEX tag......cccoiiiiiiiiiiiiiiciiiccccc s 247
o ZipBrowser eXample c....cooveinieiniiinieicce s 251
o Approaches to debugging Java CFX tagsccccoueueuiiniriiiiciininicciicccceeeeee 253
o Developing CFX tags in Cr..cvvciiiiiiiiiiiiiiiiciiiicecceec s 256

243

What are CFX tags?

ColdFusion Extension (CFX) tags are custom tags written against the ColdFusion

Extension Application Programming Interface. Generally, you create a CFX tag if you

want to do something that is not possible in CFML, or if you want to improve the

performance of a repetitive task.

One common use of CFX tags is to incorporate existing application functionality into a

ColdFusion application. That means if you already have the code available, CEX tags

make it easy to use it in your application.

CFX tags can do the following:

¢ Handle any number of custom attributes.

¢ Use and manipulate ColdFusion queries for custom formatting.

o Generate ColdFusion queries for interfacing with non-ODBC based information
sources.

¢ Dynamically generate HTML to be returned to the client.

o Set variables within the ColdFusion application page from which they are called.

o Throw exceptions that result in standard ColdFusion error messages.

You can build CFX tags using C++ or Java.

Note: ColdFusion provides several different technigues to create reusable code, including
custom tags. For information on all of these techniques, see Chapter 8, “Reusing Code in
ColdFusion Pages” on page 157.

244 Chapter12 Building Custom CFXAPI Tags

Before you begin developing CFX tags in Java

Before you begin developing CFX tags in Java, you must configure your Java
development environment. Also, you might want to take a look at some examples before
creating your own CFX tags. This section contains information about examples and how
to configure your development environment.

Sample Java CFX tags

Before you begin developing a CFX tag in Java, you might want to study sample CFX
tags. You can find the Java source files for the examples on Windows in the
cfx\java\distrib\examples subdirectory of the main installation directory. On UNIX
systems, the files are located in the cfx/java/examples directory. The following table
describes the example tags:

Example Action Demonstrates

HelloColdFusion Prints a personalized The minimal implementation required
greeting. to create a CFX tag.

ZipBrowser Retrieves the contents ofa How to generate a ColdFusion query
Zip archive. and return it to the calling page.

ServerDateTime Retrieves the date and time Attribute validation, using numeric
from a network server. attributes, and setting variables within

the calling page.

OutputQuery Returns a ColdFusion query How to handle a ColdFusion query as

inan HTML table. input, throw exceptions, and generate

dynamic output.

HelloWorTdGraphic Generates a “Hello World!” How to dynamically create and return
graphic in JPEG format. graphics from a Java CFX tag.

Setting up your development environment to develop CFX tags in Java

You can use a wide range of Java development environments, including the Java
Development Kit (JDK) v 1.3.1 from Sun, to build Java CFX tags. You can download
the JDK from Sun http://java.sun.com/j2se.

Macromedia recommends that you use one of the commercial Java IDEs, such as
Dreamweaver MX, that provide an integrated environment for development, debugging,
project management, and access to documentation.

Configuring the classpath

To configure your development environment to build Java CFX tags, you must ensure
that the supporting classes are visible to your Java compiler. These classes are located in
the cfx.jar archive, located in the lib subdirectory of your ColdFusion installation
directory. Consult your Java development tool documentation to determine how to
configure the compiler classpath for your particular environment.

Before you begin developing CFX tags in Java 245

The lib directory created by the ColdFusion setup program serves two purposes:

o It contains the supporting classes required for developing and deploying Java CFX
tags. This is the com.allaire.cfx package located in the cfx.jar archive.

o It supports a feature that reloads Java CFX tags located in the directory every time
they are changed. Although this is not the default behavior for other Java classes, this
behavior is very useful during an iterative development and testing cycle.

When you create new Java CFX tags, you should develop them in the web_root/
WEB-INF/classes directory. Doing this simplifies your development, debugging, and
testing processes.

After you finish with development and testing, you can deploy your Java CFX tag
anywhere on the classpath visible to the ColdFusion embedded JVM. For more details on
customizing the classpath, see “Customizing and configuring Java”.

Customizing and configuring Java

Use the JVM and Java Settings page on the ColdFusion Administrator Server tab to
customize your Java development environment, such as by customizing the classpath and
Java system properties, or specifying an alternate JVM. For more information, see the
ColdFusion Administrator’s online Help.

246 Chapter12 Building Custom CFXAPI Tags

Writing a Java CFX tag

To create a Java CFX tag, create a class that implements the CustomTag interface. This
interface contains one method, processRequest, which is passed Request and Response
objects that are then used to do the work of the tag.

The example in the following procedure creates a very simple Java CFX tag named
cfx_MyHelloColdFusion that writes a text string back to the calling page.

To create a Java CFX tag:
1 Create a new source file in your editor with the following code:
import com.allaire.cfx.* ;

public class MyHelloColdFusion implements CustomTag
{
public void processRequest(Request request, Response response)
throws Exception
{
String strName = request.getAttribute("NAME") ;
response.write("Hello, " + strName) ;
}
}

2 Save the file as MyHelloColdFusion.java in the web_root/ WEB_INF/classes
directory.

3 Compile the java source file into a class file using the Java compiler. If you are using
the command-line tools bundled with the JDK, use the following command line,
which you execute from within the classes directory:

Jjavac -classpath cf_root\lib\cfx.jar MyHelloColdFusion.java
Note: The previous command works only if the Java compiler (javac.exe) is in your

path. If it is not in your path, specify the fully qualified path; for example,
c:\jdk1.3.1_0O1\bin\javac on Windows or /usr/java/bin/javac on UNIX.

If you receive errors during compilation, check the source code to make sure you entered
it correctly. If no errors occur, you successfully wrote your first Java CFX tag. For
information on using your new tag in a ColdFusion page, see “Calling the CFX tag from
a ColdFusion page” on page 247.

Calling the CFX tag from a ColdFusion page

You call Java CFX tags from within ColdFusion pages by using the name of the CFX tag
that is registered on the ColdFusion Administrator CFX tags page. This name should be
the prefix cfx_followed by the class name (without the .class extension).

To register a Java CFX tag in the ColdFusion Administrator:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

2 Click Register Java CFX.
3 Enter the tag name (for example, cfx_MyHelloColdFusion).

Enter the class name without the .class extension (for example, MyHel1oColdFusion).

Writing a Java CFX tag 247

5 (Optional) Enter a description.
6 Click Submit.

You can now call the tag from a ColdFusion page.

To call a CFX tag from a ColdFusion page:
1 Create a ColdFusion page (.cfm) in your editor with the following content to call the
HelloColdFusion custom tag:
<html>
<body>
<cfx_MyHelloColdFusion NAME="Les">

</body>
</html>

2 Save the file in a directory configured to serve ColdFusion pages. For example, you
can save the file as C:\inetpub\wwwroot\cfdocs\testjavacfx.cfm on Windows or /
home/docroot/cfdocs/testjavacfx.cfm on UNIX.

3 Ifyou have not already done so, register the CFX tag in the ColdFusion
Administrator (see “Registering CFX tags” on page 257).

4 Request the page from your browser using the appropriate URL; for example:
htep://localhost/cfdocs/testjavactx.cfm

ColdFusion processes the page and returns a page that displays the text “Hello, Les.” If an

error is returned instead, check the source code to make sure you have entered it
correctly.

To delete a CFX tag in the ColdFusion Administrator:

1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

2 For the tag you want to delete, click the Delete icon in the Controls column of the
Registered CFX Tags list.

Processing requests

Implementing a Java CFX tag requires interaction with the Request and Response objects
passed to the processRequest method. In addition, CEX tags that need to work with
ColdFusion queries also interface with the Query object. The com.allaire.cfx package,
located in the lib/cfx.jar archive, contains the Request, Response, and Query objects.

This section provides an overview of these object types. For a complete description of

these object types, see CFML Reference.

For a complete example Java CFX tag that uses Request, Response, and Query objects, see
“ZipBrowser example” on page 251.

248 Chapter12 Building Custom CFXAPI Tags

Request object

The Request object is passed to the processRequest method of the CustomTag interface.
The following table lists the methods of the Request object for retrieving attributes,
including queries, passed to the tag and for reading global tag settings:

Method

Description

attributeExists
getAttribute
getintAttribute
getAttributelList
getQuery
getSetting
debug

Checks whether the attribute was passed to this tag.
Retrieves the value of the passed attribute.

Retrieves the value of the passed attribute as an integer.
Retrieves a list of all attributes passed to the tag.
Retrieves the query that was passed to this tag, if any.
Retrieves the value of a global custom tag setting.

Checks whether the tag contains the debug attribute.

For detailed reference information on each of these interfaces, see CEML Reference.

Response object

Query object

The Response object is passed to the processRequest method of the CustomTag interface.
The following table lists the methods of the Response object for writing output,
generating queries, and setting variables within the calling page:

Method Description

write Outputs text to the calling page.
setVariable Sets a variable in the calling page.
addQuery Adds a query to the calling page.
writeDebug Outputs text to the debug stream.

For detailed reference information on each of these interfaces, see CEML Reference.

The Query object provides an interface for working with ColdFusion queries. The
following table lists the methods of the Query object for retrieving name, row count, and
column names and methods for getting and setting data elements:

Method Description

getName Retrieves the name of the query.
getRowCount Retrieves the number of rows in the query.
getColumns Retrieves the names of the query columns.
getData Retrieves a data element from the query.

Writing a Java CFX tag 249

Method Description

addRows Adds a new row to the query.

setData Sets a data element within the query.

For detailed reference information on each of these interfaces, see CEML Reference.

Loading Java CFX classes

Each Java CFX class has its own associated ClassLoader that loads it and any dependent
classes also located in the web_root/\NWEB-INF/classes directory. When Java CFX classes

are reloaded after a change, a new ClassLoader is associated with the freshly loaded class.
This special behavior is similar to the way Java servlets are handled by the web server and
other servlet engines, and is required in order to implement automatic class reloading.

However, this behavior can cause subtle problems when you are attempting to perform
casts on instances of classes loaded from a different ClassLoader. The cast fails even
though the objects are apparently of the same type. This is because the object was created
from a different ClassLoader and therefore is not technically the same type.

To solve this problem, only perform casts to class or interface types that are loaded using
the standard Java classpath, that is, classes not located in the classes directory. This works
because classes loaded from outside the classes directory are always loaded using the
system ClassLoader, and therefore, have a consistent runtime type.

Automatic class reloading

You can determine how the server treats changed Java CFX class files by specifying the
reload attribute when you use a CFX tag in your ColdFusion page. The following table
describes the allowable values for the reload attribute:

Value Description

Auto Automatically reload Java CFX and dependent classes within the classes
directory whenever the CFX class file changes. Does not reload if a
dependent class file changes but the CFX class file does not change.

Always Always reload Java CFX and dependent classes within the classes directory.
Ensures a class reload even if a dependent class changes, but the CFX class
file does not change.

Never Never reload Java CFX classes. Load them once per server lifetime.

The default value is reload="Auto". This is appropriate for most applications. Use
reload="Always" during the development process, when you must ensure that you always
have the latest class files, even when only a dependent class changed. Use reload="Never"
to increase performance, by omitting the check for changed classes.

Note: The reload attribute applies only to class files located in the classes directory. The

ColdFusion server loads classes located on the Java classpath once per server lifetime. You
must stop and restart ColdFusion Server to reload these classes.

250 Chapter12 Building Custom CFXAPI Tags

Life cycle of Java CFX tags

A new instance of the Java CFX object is created for each invocation of the Java CFX tag.
This means that it is safe to store per-request instance data within the members of your
CustomTag object. To store data and/or objects that are accessible to all instances of your
CustomTag, use static data members. If you do so, you must ensure that all accesses to the
data are thread-safe.

ZipBrowser example

The following example shows the use of the Request, Response, and Query objects. The
example uses the java.util.zip package to implement a Java CFX tag called
cfx_ZipBrowser, which is a zip file browsing tag.

Note: The Javasource file that implements cfx_ZipBrowser, ZipBrowser.java, is included in
the cf_root\cfx\java\distrib\examples directory. Compile ZipBrowser.java to implement the
tag.

The tag’s archive attribute specifies the fully qualified path of the zip archive to browse.
The tag’s name attribute must specify the query to return to the calling page. The returned
query contains three columns: Name, Size, and Compressed.

For example, to query an archive at the path C:\logfiles.zip for its contents and output
the results, you use the following CFML code:

<cfx_ZipBrowser
archive="C:\Togfiles.zip"
name="LogFiles" >

<cfoutput query="LogFiles">
fiNameff, 4Size#, #Compressedit

</cfoutput>

The Java implementation of ZipBrowser is as follows:

import com.allaire.cfx.* ;
import java.util.Hashtable ;
import java.io.FilelnputStream ;
import java.util.zip.* ;

public class ZipBrowser implements CustomTag
{
public void processRequest(Request request, Response response)
throws Exception
{
// validate that required attributes were passed
if (lrequest.attributeExists("ARCHIVE") ||
Irequest.attributeExists("NAME"))
{
throw new Exception(
"Missing attribute (ARCHIVE and NAME are both " +
"required attributes for this tag)") ;
}
// get attribute values
String strArchive = request.getAttribute("ARCHIVE") ;
String strName = request.getAttribute("NAME") ;

ZipBrowser example 251

// create a query to use for returning the 1ist of files
Stringl] columns = { "Name", "Size", "Compressed" } ;
int iName = 1, iSize = 2, iCompressed = 3 ;

Query files = response.addQuery(strName, columns) ;

// read the zip file and build a query from its contents

ZipInputStream zin =

new ZipInputStream(new FilelnputStream(strArchive)) ;
ZipEntry entry ;
while ((entry = zin.getNextEntry()) != null)
{

// add a row to the results

int iRow = files.addRow() ;

// populate the row with data

files.setData(iRow, iName,
entry.getName()) ;

files.setData(iRow, iSize,
String.valueOf(entry.getSize())) ;

files.setData(iRow, iCompressed,
String.valueOf(entry.getCompressedSize())) ;

// finish up with entry
zin.closekntry() ;
}

// close the archive
zin.close() ;

252 Chapter12 Building Custom CFXAPI Tags

Approaches to debugging Java CFX tags

Java CFX tags are not stand-alone applications that run in their own process, like typical
Java applications. Rather, they are created and invoked from an existing
process—ColdFusion Server. This makes debugging Java CFX tags more difficult,
because you cannot use an interactive debugger to debug Java classes that have been
loaded by another process.

To overcome this limitation, you can use one of the following techniques:

¢ Debug the CFX tag while it is running within ColdFusion Server by outputting the
debug information as needed.

¢ Debug the CFX tag using a Java IDE (Integrated Development Environment) that
supports debugging features, such as setting breakpoints, stepping through your code,
and displaying variable values.

o Debug the request in an interactive debugger offline from ColdFusion Server using
the special com.allaire.cfx debugging classes.

Outputting debugging information

Before using interactive debuggers became the norm, programmers typically debugged
their programs by inserting output statements in their programs to indicate information
such as variable values and control paths taken. Often, when a new platform emerges,
this technique comes back into vogue while programmers wait for more sophisticated
debugging technology to develop for the platform.

If you need to debug a Java CFX tag while running against a live production server, this is
the technique you must use. In addition to outputting debugging text using the
Response.write method, you can also call your Java CFX tag with the debug="0n"
attribute. This attribute flags the CFX tag that the request is running in debug mode and
therefore should output additional extended debugging information. For example, to call
the HelloColdFusion CFX tag in debugging mode, use the following CFML code:
{cfx_HelloColdFusion name="Robert" debug="0n">

To determine whether a CFX tag is invoked with the debug attribute, use the
Request.debug method. To write debugging output in a special debugging block after the

tag finishes executing, use the Response.writeDebug method. For information on using
these methods, see CFML Reference.

Debugging in a Java IDE
You can use a Java IDE to debug your Java CFX tags. This means you can develop your

Java CFX tag and debug it in a single environment.

To use a Java IDE to debug your CFX tag:
1 Start your IDE.

2 In the project properties (or your IDE's project setting), make sure your CFX class is
in the web_roo\\WEB-INF\classes directory or in the system classpath.

Approaches to debugging Java CFX tags 253

3 Make sure the libraries ¢f rooA\lib\cfx.jar and ¢f” roof\runtime\lib\jrun.jar are included

in your classpath.

4 In your project settings, set your main class to jrunx.kernel.JRun and application

parameters to -start default.

5 Debug your application by setting breakpoints, single stepping, displaying variables,
or by performing other debugging actions.

Using the debugging classes

To develop and debug Java CFX tags in isolation from the ColdFusion, you use three

special debugging classes that are included in the com.allaire.cfx package. These classes

lets you simulate a call to the processRequest method of your CFX tag within the context

of the interactive debugger of a Java development environment. The three debugging

classes are:

e DebugRequest An implementation of the Request interface that lets you initialize the
request with custom attributes, settings, and a query.

e DebugResponse An implementation of the Response interface that lets you print the
results of a request once it has completed.

e DebugQuery An implementation of the Query interface that lets you initialize a query
with a name, columns, and a data set.

To use the debugging classes:
1 Create a main method for your Java CFX class.

2 Within the main method, initialize a DebugRequest and DebugResponse, and a
DebugQuery. Use the appropriate attributes and data for your test.

3 Create an instance of your Java CFX tag and call its processRequest method, passing
in the DebugRequest and DebugResponse objects.

4 Call the DebugResponse.printResults method to output the results of the request,
including content generated, variables set, queries created, and so on.

After you implement a main method as described previously, you can debug your Java
CFX tag using an interactive, single-step debugger. Specify your Java CFX class as the
main class, set breakpoints as appropriate, and begin debugging.

254 Chapter12 Building Custom CFXAPI Tags

Debugging classes example

The following example demonstrates how to use the debugging classes:

import java.util.Hashtable ;
import com.allaire.cfx.* ;

public class OutputQuery implements CustomTag

{

// debugger testbed for OutputQuery
public static void main(String[] argv)

{

try

{

}

// initialize attributes

Hashtable attributes = new Hashtable() ;
attributes.put("HEADER", "Yes") ;
attributes.put("BORDER", "3") ;

// initialize query

Stringl] columns =
{ "FIRSTNAME", "LASTNAME", "TITLE" } ;

String[][] data = {
{ "Stephen", "Cheng", "Vice President" },
{ "Joe", "Berrey", "Intern" },
{ "Adam", "Lipinski", "Director" },
{ "Lynne", "Teague", "Developer" } } ;

DebugQuery query =
new DebugQuery("Employees", columns, data) ;

// create tag, process debugging request, and print results
OutputQuery tag = new OutputQuery() ;

DebugRequest request = new DebugRequest(attributes, query) ;
DebugResponse response = new DebugResponse() ;
tag.processRequest(request, response) ;
response.printResults() ;

catch(Throwable e)

{

}
}

e.printStackTrace() ;

public void processRequest(Request request) throws Exception

{

// ...code for processing the request...

}

Approaches to debugging Java CFX tags

255

Developing CFX tags in C++

The following sections provide information to help you develop CFX tags in C++.

Sample C++ CFX tags

Before you begin development of a CFX tag in C++, you might want to study the two
CFX tags included with ColdFusion. These examples will help you get started working
with the CFXAPI. The two example tags are as follows:

e CFX_DIRECTORYLIST Queries a directory for the list of files it contains.

e CFX_NTUSERDB (Windows NT only) Lets you add and delete Windows NT users.
On Windows NT, these tags are located in the \cfusion\cfx\examples directory. On
UNIX, these tags are in ¢f” 700t/ coldfusion/cfx/examples.

Setting up your C++ development environment
The following compliers generate valid CFX code for UNIX platforms:

Platform Compiler

Solaris Sun C++ compiler 5.0 or higher (gcc does not work)
Linux RedHat 6.2 gcc/eges 1.1.2 compiler

HPUX 11 HP aCC C++ compiler

Before you can use your C++ compiler to build custom tags, you must enable the
compiler to locate the CEX API header file, cfx.h. In Windows, you do this by adding the
CFX API include directory to your list of global include paths. In Windows, this
directory is \cfusion\cfx\include. On UNIX this directory is /opt/coldfusion/cfx/include.
On UNIX, you will need -1 <includepath> on your compile line (see the Makefile for
the directory list example in the cfx/examples directory).

Compiling C++ CFX tags
CFX tags built in Windows and on UNIX must be thread-safe. Compile CFX tags for

Solaris with the -mt switch on the Sun compiler.

Locating your C++ library files on Unix

On Unix systems, your C++ library files can be in any directory as long as the directory is

included in LD_LIBRARY_PATH or SHLIB_PATH (HP-UX only).

Implementing C++ CFX tags

CFX tags built in C++ use the tag request object, represented by the C++ class
CCFXRequest. This object represents a request made from an application page to a custom
tag. A pointer to an instance of a request object is passed to the main procedure of a
custom tag. The methods available from the request object let the custom tag accomplish
its work. For information about the CFX API classes and members, see CFML Reference.

256 Chapter12 Building Custom CFXAPI Tags

Debugging C++ CFX tags

After you configure a debugging session, you can run your custom tag from within the
debugger, set breakpoints, single-step, and so on.

Debugging on Windows

You can debug custom tags within the Visual C++ environment.

To debug C++ CFX tags in Windows:

1

2
3
4
5

Build your C++ CEX tag using the debug option.
Restart ColdFusion.

Start Visual C++ 6.0.

Select Build > Start Debug > AttachProcess.

Select jrunsve.exe.

Macromedia recommends that you shut down all other Java programs.
Execute any ColdFusion page that calls the CFX tag.
Select File > Open to open a file in VisualDev in which to set a breakpoint.

Set a breakpoint in the CFX project.

The best place is to put it in ProcessRequest (). Next time you execute the page you
will hit the breakpoint.

Registering CFX tags

To use a CFX tag in your ColdFusion applications, first register it in the Extensions, CFX
Tags page in the ColdFusion Administrator.

To register a C++ CFX tag:

1

[«) WAV, BTN GV (S

7
8

On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

Click Register C++ CFX.

Enter the Tag name (for example, cfx_MyNewTag).

If the Server Library .dll field is empty, enter the filepath.
Accept the default Procedure entry.

Clear the Keep library loaded box while developing the tag.

For improved performance, when the tag is ready for production use, you can select
this option to keep the DLL in memory.

(Optional) Enter a description.
Click Submit.

You can now call the tag from a ColdFusion page.

Developing CFX tags in C++ 257

To delete a CFX tag:
1 On the ColdFusion Administrator Server tab, select Extensions > CFX Tags to open
the CFX Tags page.

2 For the tag you want to delete, click the Delete icon in the Controls column of the

Registered CFX Tags list.

258 Chapter12 Building Custom CFXAPI Tags

PART Il
Developing CFML. Applications

This part describes how to develop ColdFusion applications. It describes
the elements of a ColdFusion application and how to structure an
application, handle errors, use variables that are shared among pages,
lock code segments, and secure your application. It also describes how to
create a globalized applicatio,n and debug and troubleshoot application
problems.

The following chapters are included:

Designing and Optimizing a ColdFusion Application ..., 261
HaNAING EITOTS ..ot 287
Using Persistent Data and LOCKING ..o, 315
Securing APPHCATIONS ..o 347
Developing Globalized ApplicationSccooivevoioecieieeeeeeeeeeeeeeees 373

Debugging and Troubleshooting Applications ..o 389

CHAPTER 13
Designing and Optimizing a
ColdFusion Application

This chapter describes the elements that make your ColdFusion pages into an effective
Internet application. It provides an overview of application elements, describes how you
can structure an application on your server, and provides detailed information on using
the Application.cfm file. It also describes coding methods for optimizing application

efficiency.

Contents

¢ ADOUL APPLICATIONS . ..vviiiiiiiiiici e 262
o Elements of a ColdFusion application.........ccceeevvuiierinierinieienieieieeneeceeeenes 262
o Mapping an application..........ccevveiriiiriiinicirecee s 265
o Creating the Application.cfm page..........ccccevevuricicininiciciniirccccceeeeeee 268
o Optimizing ColdFusion applicationsc.cececevueuerieineineineincineeneeneenenes 272

261

About applications

The term application can mean many things. An application can be as simple as a guest
book or as sophisticated as a full Internet commerce system with catalog pages, shopping
carts, and reporting.

However, an application has a specific meaning in ColdFusion. A ColdFusion

application consists of one or more ColdFusion pages that work together and share a

common set of resources. In particular, the application shares an application name as

specified in a cfapplication tag, and all pages in the application share variables in the

Application scope. What appears to a user to be a single application, for example, a

company’s website, might consist of multiple ColdFusion applications.

While there are no definite rules as to how you represent your web application as a

ColdFusion application or applications, the following guidelines are useful:

o Application pages share a common general purpose. For example, a web storefront is
typically a single ColdFusion application.

e Many, but not necessarily all, pages in a ColdFusion application share data or
common code elements, such as a single login mechanism.

o Application pages share a common look and feel, often enforced by using common
code elements, such as the same header and footer pages, and a common error
message template.

This chapter describes the tools that ColdFusion provides to create an application, and

presents information on how you can develop and optimize your application.

Elements of a ColdFusion application

Before you develop a ColdFusion application, you must determine how to structure the
application and how to handle application-wide needs and issues. In particular, you must
consider all of the following:

o The overall application framework

o Application-level settings and functions

¢ Reusable application elements

o Shared variables

o Application security and user identification

The following sections introduce these application elements and provide references to
more detailed information.

The application framework

The application framework is the overall structure of the application and how your
directory structure and application pages reflect that structure. You can use a single
application framework to structure multiple ColdFusion applications into a single
website or Internet application. You can structure a ColdFusion application using many
methodologies. For example, the FuseBox application development methodology is one
popular framework for developing ColdFusion web applications. (For more information
on FuseBox, see http://www.fusebox.org.)

262 Chapter13 Designing and Optimizing a ColdFusion Application

This chapter does not provide information on how to use or develop a specific
application framework. However, it does discuss how an application’s directory structure
affects the application and how you can map the directory structure. For more
information on mapping the application framework, see “Mapping an application” on
page 265.

Note: For one example of an application framework, see "ColdFusion Methodologies for

Content Management", available at http://www.macromedia.com/v1/handlers/
index.cfm?ID=20750&method=full.

Application-level settings and functions

ColdFusion processes the following two pages, if they are available, every time it
processes any page in the application:

o The Application.cfm page is processed before each page in the application.

e The OnRequestEnd.cfm page is processed after each page in the application.

Note: UNIX systems are case-sensitive. To ensure that your pages work on UNIX, always
capitalize the A in Application.cfm and the O, R, and E in OnRequestEnd.cfm.

The Application.cfm page provides a good place to define the application. It can contain
the cfapplication tag that specifies the application name, and contains code that must be
processed for all pages in the application. This page defines application-level settings,
functions, and features.

Application-level features can include page processing settings, default variables, data
sources, style settings, and other application-level constants, and application-specific
custom error pages. When defined and set on the Application.cfm page, they are available
on all pages in the application.

ColdFusion applications can have application-level variables that are not in the
Application scope. For example, every page in an application might have a currentPage
variable thart identifies the page. The Application.cfm page can set this variable in the
Variables scope, so each page gets a different, local value. Because every page in the
application has the variable, it can be considered to be an application-level variable, even
though it is not an Application scope variable.

The OnRequestEnd.cfm page is used in fewer applications than the Application.cfm
page. It lets you provide common clean-up code that gets processed after all application
pages.

For more information on the Application.cfm and OnRequestEnd.cfm pages, see
“Creating the Application.cfm page” on page 268. For information on placing these
pages in the application directory structure, see “Mapping an application” on page 265.
Note: You can create a ColdFusion application without using Application.cfm or
OnRequestEnd.cfm pages. However, it is much easier to use the Application.cfm page than

to have each page in the application use a cfapplicationtag and define common
application elements.

Elements of a ColdFusion application 263

Reusable application elements

ColdFusion provides a variety of reusable elements that you can use to provide
commonly-used functionality and extend CFML. These elements include the following:
e User-defined functions (UDFs)

e CFML custom tags

¢ ColdFusion components

¢ CFX (ColdFusion Extension) tags

e pages that you include using the cfinclude tag

For an overview of these elements, and information about how to choose among them,

see Chapter 8, “Reusing Code in ColdFusion Pages” on page 157.

Shared variables

The following ColdFusion variable scopes maintain data that lasts beyond the scope of
the current HTTP request:

Variable scope Description

Session Variables that are available for a single client browser for a single
browser session in one application.

Client Variables that are available for a single client browser over multiple
browser sessions in one application.

Application Variables that are available to all pages in an application for all clients.

Server Variables that are available to all applications on a server and all clients.

For more information on using these variables, including how to use locks to ensure that
the data they contain remains accurate, see Chapter 15, “Using Persistent Data and
Locking” on page 315.

Application security and user identification

All applications must ensure that malicious users cannot make improper use of their
resources. Additionally, many applications require user identification, typically to control
the portions of a site that the user can access, to control the operations that the user can
perform, or to provide user-specific content. ColdFusion provides the following forms of
application security to address these issues:

e Resource (file and directory-based) security Limits the ColdFusion resources,
such as tags, functions, and data sources that application pages in particular
directories can access. You must consider the resource security needs of your
application when you design the application directory structure.

¢ User (programmatic) security Provides an authentication (login) mechanism and
a role-based authorization mechanism to ensure that users can only access and use
selected features of the application. User security also incorporates a user ID which
you can use to customize page content. To implement user security, you include
security code, such as the cflogin and cfloginuser tags, in your application.

For more on implementing security, see Chapter 16, “Securing Applications.

264 Chapter13 Designing and Optimizing a ColdFusion Application

Mapping an application

When you design a ColdFusion application, you must map the directory structure. This
activity is an important step in designing a ColdFusion application. Before you start
building the application, you must establish a root directory for the application. You can
store application pages in subdirectories of the root directory.

The following sections describe how you determine where to place your application pages
and the Application.cfm and OnRequestEnd pages in a directory structure. For more
information on how to define and use the Application.cfm page, see “Creating the
Application.cfm page” on page 268.

Processing the Application.cfm and OnRequestEnd.cfm pages

ColdFusion uses similar, but different, rules to locate and process the Application.cfm
and OnRequestEnd.cfm pages.

Processing the Application.cfm page

When ColdFusion receives a request for an application page, it searches the page's
directory for a file named Application.cfm. If one exists, the Application.cfm code is
logically included at the beginning of that application page.

If the application page directory does not have an Application.cfm page, ColdFusion
searches up the directory tree until it finds an Application.cfm page. If several directories
in the directory tree have an Application.cfm page, ColdFusion uses the first page it
finds. If the Application.cfm page is present in the directory tree (and has the required
permissions set), you cannot prevent ColdFusion from including it.

ColdFusion processes only one Application.cfm page for each request. If a ColdFusion
page has a cfinclude tag pointing to an additional ColdFusion page, ColdFusion does
not search for an Application.cfm page when it includes the additional page.

If your application runs on a UNIX platform, which is case-sensitive, you must spell
Application.cfm with an initial capital letter.

Processing the OnRequestEnd.cfm page

Just as the Application.cfm page runs before the code on an application page, an
OnRequestEnd.cfm page runs, if it exists, after each application page in the same
application.

The OnRequestEnd.cfm page must be in the same directory as the Application.cfm page
ColdFusion uses for the current page. ColdFusion does not search beyond that directory,
so it does not run an OnRequestEnd.cfm page that resides in another directory.

The OnRequestEnd.cfm page does not run if there is an error or an exception on the
application page, or if the application page executes the cfabort or cfexit tag.

On UNIX systems, you must spell the OnRequestEnd.cfm file with the capital letters
shown.

Mapping an application 265

Defining the directory structure

Defining an application directory structure with an application-specific root directory

has the following advantages:

¢ Development The application is easier to develop and maintain, because the
application page files are well-organized.

e Dortability You can easily move the application to another server or another part of
a server without changing any code in the application page files.

o Application-level settings Application pages that are under the same directory can
share application-level settings and functions.

o Security Application pages that are under the same directory can share web server
security settings.

When you put your application in an application-specific directory hierarchy, you can
use a single Application.cfm page in the application root directory, or put different
Application.cfm pages that govern individual sections of the application in different
directories.

You can divide your logical web application into multiple ColdFusion applications by
using multiple Application.cfm pages with different application names. Alternatively, you
can use multiple Application.cfm pages that specify the same application name, but have
different common code, for different subsections of your application.

The directory trees in the following figure show two approaches to implementing an

application framework:

¢ In the example on the left, a company named Web Wonders, Inc. uses a single
Application.cfm file installed in the application root directory to process all
application page requests.

o In the example on the right, Bandwidth Associates uses the settings in individual
Application.cfm files to create individual ColdFusion applications at the
departmental level. Only the Products application pages are processed using the
settings in the root Application.cfm file. The Consulting, Marketing, and Sales
directories each have their own Application.cfm file.

266 Chapter13 Designing and Optimizing a ColdFusion Application

Web Wonders, Inc.

T

Application.cfm

Products

ﬁ

Support

Services

L

1

Bandwidth Associates

Application.cfm

4@ Products

4@ Consulting
4,. Application.cfm

4@ Marketing

Application.cfm

P

)

Sales

4,. Application.cfm

Mapping an application 267

Creating the Application.cfm page

The Application.cfm page defines application-level settings and functions such as the
following:

e Application name

¢ Client, application, and session variable variable management options

e DPage processing settings

o Default variables, data sources, style settings, and other application-level constants
e Login processing

o Application-specific error handling

Naming the application

In ColdFusion, you define an application by giving it a name using the cfapplication
tag. By using a specific application name in a cfapplication tag, you define a set of pages
as part of the same logical application. Although you can create an application by putting
a cfapplication tag with the application name on each page, you normally put the tag in
the Application.cfm file; for example:

<cfapplication name="SearchApp">

Note: The value you set for the name attribute in the cfapplicationtagis limited to 64
characters.

ColdFusion supports unnamed applications, which are useful for ColdFusion
applications that must interoperate with JSP tags and servlets. C